[npu] change device to accelerator api (#5239)

* update accelerator

* fix timer

* fix amp

* update

* fix

* update bug

* add error raise

* fix autocast

* fix set device

* remove doc accelerator

* update doc

* update doc

* update doc

* use nullcontext

* update cpu

* update null context

* change time limit for example

* udpate

* update

* update

* update

* [npu] polish accelerator code

---------

Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com>
Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
Hongxin Liu
2024-01-09 10:20:05 +08:00
committed by GitHub
parent dd2c28a323
commit d202cc28c0
128 changed files with 1773 additions and 868 deletions

View File

@@ -10,6 +10,7 @@ import torch.nn as nn
from torch.distributed import ProcessGroup
from torch.nn.parameter import Parameter
from colossalai.accelerator import get_accelerator
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils.memory import colo_device_memory_capacity
@@ -22,7 +23,7 @@ from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_move_to_c
from colossalai.legacy.zero.shard_utils import BaseShardStrategy
from colossalai.legacy.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
from colossalai.logging import get_dist_logger
from colossalai.utils import disposable, get_current_device
from colossalai.utils import disposable
from colossalai.zero.gemini.memory_tracer import MemStatsCollector
from ._utils import (
@@ -212,8 +213,12 @@ class ShardedModelV2(nn.Module):
self.logger.error(f"dump memory tracer collected information to a {filename}", ranks=[0])
if gpc.get_global_rank() == 0:
with open(filename, "w+") as f:
f.write(f"cuda reserved {torch.cuda.memory_reserved(get_current_device()) / 1e9} GB\n")
f.write(f"cuda max allocated {torch.cuda.max_memory_allocated(get_current_device()) / 1e9} GB\n")
f.write(
f"cuda reserved {torch.cuda.memory_reserved(get_accelerator().get_current_device()) / 1e9} GB\n"
)
f.write(
f"cuda max allocated {torch.cuda.max_memory_allocated(get_accelerator().get_current_device()) / 1e9} GB\n"
)
f.write("CUDA model data (GB)\n")
f.write("\n")
f.write("CUDA non model data (GB)\n")
@@ -266,7 +271,8 @@ class ShardedModelV2(nn.Module):
# model data is fixed in cuda during training.
# cuda margin space can be used to store OS.
self._cuda_margin_space = (
colo_device_memory_capacity(get_current_device()) - self._memstats_collector._memstats.max_overall_cuda
colo_device_memory_capacity(get_accelerator().get_current_device())
- self._memstats_collector._memstats.max_overall_cuda
)
@torch.no_grad()