mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 02:51:59 +00:00
[npu] change device to accelerator api (#5239)
* update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
@@ -7,11 +7,11 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.legacy.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.utils.device import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd, run_fwd_bwd
|
||||
@@ -47,7 +47,9 @@ def multi_chunk_init(model: torch.nn.Module, placement_config: dict):
|
||||
|
||||
|
||||
def single_chunk_init(model: torch.nn.Module, placement_config: dict):
|
||||
model = GeminiDDP(model, chunk_init_device=get_current_device(), pin_memory=True, **placement_config)
|
||||
model = GeminiDDP(
|
||||
model, chunk_init_device=get_accelerator().get_current_device(), pin_memory=True, **placement_config
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@@ -63,7 +65,7 @@ def exam_inference(placement_config: dict, model_name: str, model_init_func: Cal
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||
init_dev = get_current_device()
|
||||
init_dev = get_accelerator().get_current_device()
|
||||
model = model_builder().to(init_dev)
|
||||
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
|
Reference in New Issue
Block a user