mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
Add FreqAwareEmbeddingBag (#1421)
This commit is contained in:
@@ -7,12 +7,26 @@ import numpy as np
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
|
||||
from colossalai.nn._ops.cache_embedding import CachedParamMgr
|
||||
from colossalai.nn._ops.cache_embedding import CachedParamMgr, FreqAwareEmbeddingBag
|
||||
|
||||
NUM_EMBED, EMBED_DIM = 100, 8
|
||||
NUM_EMBED, EMBED_DIM = 10, 8
|
||||
BATCH_SIZE = 8
|
||||
|
||||
|
||||
def synthesize_1d_sparse_feature(
|
||||
batch_size,
|
||||
num_embed,
|
||||
device,
|
||||
):
|
||||
indices_in_batch = batch_size * 2
|
||||
indices = torch.randint(low=0, high=num_embed, size=(indices_in_batch,), device=device, dtype=torch.long)
|
||||
offsets = torch.from_numpy(
|
||||
np.array([
|
||||
0, *np.sort(np.random.randint(low=0, high=indices_in_batch, size=(indices_in_batch - 1,))), indices_in_batch
|
||||
])).to(device).long()
|
||||
return indices, offsets
|
||||
|
||||
|
||||
def test_cachemgr():
|
||||
model = torch.nn.EmbeddingBag(10000, 128)
|
||||
# 10 chunks, 5 in cuda
|
||||
@@ -70,6 +84,50 @@ def test_reorder_with_freq():
|
||||
f"offset in chunk: {offset_in_chunk}, mgr: {mgr_offsets}"
|
||||
|
||||
|
||||
def test_freq_aware_embed():
|
||||
device = torch.device('cuda', 0)
|
||||
model = FreqAwareEmbeddingBag(
|
||||
NUM_EMBED,
|
||||
EMBED_DIM,
|
||||
mode='mean',
|
||||
include_last_offset=True,
|
||||
).to(device)
|
||||
model.preprocess(cuda_row_num=BATCH_SIZE * 2, ids_freq_mapping=None)
|
||||
|
||||
assert model.weight.shape[0] == NUM_EMBED
|
||||
ref_model = torch.nn.EmbeddingBag.from_pretrained(model.weight.detach().to(device),
|
||||
mode='mean',
|
||||
include_last_offset=True,
|
||||
freeze=False)
|
||||
|
||||
assert torch.allclose(ref_model.weight.detach(), model.weight.detach().to(device))
|
||||
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
|
||||
ref_optimizer = torch.optim.SGD(ref_model.parameters(), lr=1e-3)
|
||||
|
||||
for i in range(5):
|
||||
indices, offsets = synthesize_1d_sparse_feature(BATCH_SIZE, NUM_EMBED, device)
|
||||
res = model(indices, offsets)
|
||||
ref_res = ref_model(indices, offsets)
|
||||
assert torch.allclose(res, ref_res), f"model result: {res}, reference: {ref_res}"
|
||||
|
||||
grad = torch.rand_like(res)
|
||||
# comparing gradient here is nontrivial
|
||||
res.backward(grad)
|
||||
ref_res.backward(grad)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
ref_optimizer.step()
|
||||
ref_optimizer.zero_grad()
|
||||
|
||||
model.cache_weight_mgr.flush()
|
||||
model_weight = model.weight.detach().to(device)
|
||||
ref_weight = ref_model.weight.detach()
|
||||
assert torch.allclose(model_weight, ref_weight), \
|
||||
f"model weight: {model_weight[10:18, :8]}, reference: {ref_weight[10:18, :8]}"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_freq_aware_embed()
|
||||
# test_chunkmgr_admit()
|
||||
|
Reference in New Issue
Block a user