Add GRPO and Support RLVR for PPO (#6186)

* add grpo, support rlvr

* add grpo, support rlvr

* tested deepseek r1 pipeline

* add ci

* verify grpo r1

* verify grpo r1

* update readme, remove unused code

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove path

* clean code

* fix circular import

* fix ci OOM

* fix ci OOM

* skip kto tp, fix qwen generation

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
YeAnbang
2025-02-18 09:43:36 +08:00
committed by GitHub
parent ce0ec40811
commit d20c8ffd97
39 changed files with 1995 additions and 277 deletions

View File

@@ -343,7 +343,7 @@ class DPOTrainer(SLTrainer):
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item())
if (i + 1) % self.accumulation_steps == 0:
if (self.num_train_step + 1) % self.accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
self.actor_scheduler.step()
@@ -358,26 +358,27 @@ class DPOTrainer(SLTrainer):
)
step_bar.update()
if self.writer and is_rank_0():
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
global_step = (self.num_train_step + 1) / self.accumulation_steps
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), global_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], global_step)
self.writer.add_scalar(
"train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), self.num_train_step
"train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), global_step
)
self.writer.add_scalar(
"train/rejected_rewards",
self.accumulative_meter.get("rejected_rewards"),
self.num_train_step,
global_step,
)
self.writer.add_scalar(
"train/margin",
self.accumulative_meter.get("chosen_rewards")
- self.accumulative_meter.get("rejected_rewards"),
self.num_train_step,
global_step,
)
self.writer.add_scalar(
"train/accuracy",
self.accumulative_meter.get("accuracy"),
self.num_train_step,
global_step,
)
self.num_train_step += 1
self.accumulative_meter.reset()