mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
Add GRPO and Support RLVR for PPO (#6186)
* add grpo, support rlvr * add grpo, support rlvr * tested deepseek r1 pipeline * add ci * verify grpo r1 * verify grpo r1 * update readme, remove unused code * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove path * clean code * fix circular import * fix ci OOM * fix ci OOM * skip kto tp, fix qwen generation --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
386
applications/ColossalChat/coati/trainer/grpo.py
Executable file
386
applications/ColossalChat/coati/trainer/grpo.py
Executable file
@@ -0,0 +1,386 @@
|
||||
"""
|
||||
GRPO trainer
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import wandb
|
||||
from coati.experience_buffer import NaiveExperienceBuffer
|
||||
from coati.experience_maker import Experience, NaiveExperienceMaker
|
||||
from coati.models import RewardModel, RLVRRewardModel
|
||||
from coati.models.loss import GPTLMLoss, PolicyLoss
|
||||
from coati.models.utils import calc_action_log_probs
|
||||
from coati.trainer.callbacks import Callback
|
||||
from coati.trainer.utils import all_reduce_mean
|
||||
from coati.utils import AccumulativeMeanMeter, save_checkpoint
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
from tqdm import tqdm
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
||||
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from .base import OLTrainer
|
||||
from .utils import AnnealingScheduler, CycledDataLoader, is_rank_0, to_device
|
||||
|
||||
|
||||
def _set_default_generate_kwargs(actor: PreTrainedModel) -> Dict:
|
||||
"""
|
||||
Set default keyword arguments for generation based on the actor model.
|
||||
|
||||
Args:
|
||||
actor (PreTrainedModel): The actor model.
|
||||
|
||||
Returns:
|
||||
Dict: A dictionary containing the default keyword arguments for generation.
|
||||
"""
|
||||
unwrapped_model = actor.unwrap()
|
||||
new_kwargs = {}
|
||||
# use huggingface models method directly
|
||||
if hasattr(unwrapped_model, "prepare_inputs_for_generation"):
|
||||
new_kwargs["prepare_inputs_fn"] = unwrapped_model.prepare_inputs_for_generation
|
||||
if hasattr(unwrapped_model, "_update_model_kwargs_for_generation"):
|
||||
new_kwargs["update_model_kwargs_fn"] = unwrapped_model._update_model_kwargs_for_generation
|
||||
return new_kwargs
|
||||
|
||||
|
||||
class GRPOTrainer(OLTrainer):
|
||||
"""
|
||||
Trainer for GRPO algorithm.
|
||||
|
||||
Args:
|
||||
strategy (Booster): the strategy to use for training
|
||||
actor (Actor): the actor model in ppo algorithm
|
||||
reward_model (RewardModel): the reward model in rlhf algorithm to make reward of sentences
|
||||
initial_model (Actor): the initial model in rlhf algorithm to generate reference logics to limit the update of actor
|
||||
actor_optim (Optimizer): the optimizer to use for actor model
|
||||
kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss
|
||||
train_batch_size (int, defaults to 8): the batch size to use for training
|
||||
buffer_limit (int, defaults to 0): the max_size limitation of buffer
|
||||
buffer_cpu_offload (bool, defaults to True): whether to offload buffer to cpu
|
||||
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
|
||||
vf_coef (float, defaults to 1.0): the coefficient of value loss
|
||||
ptx_coef (float, defaults to 0.9): the coefficient of ptx loss
|
||||
value_clip (float, defaults to 0.4): the clip coefficient of value loss
|
||||
sample_buffer (bool, defaults to False): whether to sample from buffer
|
||||
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
||||
offload_inference_models (bool, defaults to True): whether to offload inference models to cpu during training process
|
||||
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||
generate_kwargs (dict, optional): the kwargs to use while model generating
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
actor_booster: Booster,
|
||||
actor: PreTrainedModel,
|
||||
reward_model: Union[RewardModel, RLVRRewardModel],
|
||||
initial_model: PreTrainedModel,
|
||||
actor_optim: Optimizer,
|
||||
actor_lr_scheduler: _LRScheduler,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
kl_coef: float = 0.1,
|
||||
ptx_coef: float = 0.9,
|
||||
train_batch_size: int = 8,
|
||||
buffer_limit: int = 0,
|
||||
buffer_cpu_offload: bool = True,
|
||||
eps_clip: float = 0.2,
|
||||
vf_coef: float = 1.0,
|
||||
value_clip: float = 0.2,
|
||||
sample_buffer: bool = False,
|
||||
dataloader_pin_memory: bool = True,
|
||||
offload_inference_models: bool = True,
|
||||
apply_loss_mask: bool = True,
|
||||
accumulation_steps: int = 1,
|
||||
save_interval: int = 0,
|
||||
save_dir: str = None,
|
||||
use_tp: bool = False,
|
||||
num_generation: int = 8,
|
||||
inference_batch_size: int = None,
|
||||
logits_forward_batch_size: int = None,
|
||||
temperature_annealing_config: Optional[Dict] = None,
|
||||
coordinator: DistCoordinator = None,
|
||||
callbacks: List[Callback] = [],
|
||||
**generate_kwargs,
|
||||
) -> None:
|
||||
if isinstance(actor_booster, GeminiPlugin):
|
||||
assert not offload_inference_models, "GeminiPlugin is not compatible with manual model.to('cpu')"
|
||||
|
||||
data_buffer = NaiveExperienceBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
|
||||
super().__init__(actor_booster, None, data_buffer, sample_buffer, dataloader_pin_memory, callbacks=callbacks)
|
||||
self.generate_kwargs = _set_default_generate_kwargs(actor)
|
||||
self.generate_kwargs.update(generate_kwargs)
|
||||
|
||||
self.actor = actor
|
||||
self.actor_booster = actor_booster
|
||||
self.actor_scheduler = actor_lr_scheduler
|
||||
self.tokenizer = tokenizer
|
||||
self.experience_maker = NaiveExperienceMaker(
|
||||
self.actor,
|
||||
None,
|
||||
reward_model,
|
||||
initial_model,
|
||||
self.tokenizer,
|
||||
kl_coef,
|
||||
use_grpo=True,
|
||||
num_generation=num_generation,
|
||||
inference_batch_size=inference_batch_size,
|
||||
logits_forward_batch_size=logits_forward_batch_size,
|
||||
)
|
||||
if temperature_annealing_config:
|
||||
# use annealing
|
||||
self.temperature_annealing_scheduler = AnnealingScheduler(
|
||||
temperature_annealing_config["start_temperature"],
|
||||
temperature_annealing_config["end_temperature"],
|
||||
temperature_annealing_config["annealing_warmup_steps"],
|
||||
temperature_annealing_config["annealing_steps"],
|
||||
)
|
||||
else:
|
||||
self.temperature_annealing_scheduler = None
|
||||
|
||||
self.train_batch_size = train_batch_size
|
||||
|
||||
self.actor_loss_fn = PolicyLoss(eps_clip)
|
||||
self.vf_coef = vf_coef
|
||||
self.ptx_loss_fn = GPTLMLoss()
|
||||
self.ptx_coef = ptx_coef
|
||||
self.actor_optim = actor_optim
|
||||
self.save_interval = save_interval
|
||||
self.apply_loss_mask = apply_loss_mask
|
||||
self.coordinator = coordinator
|
||||
self.actor_save_dir = os.path.join(save_dir, "actor")
|
||||
self.num_train_step = 0
|
||||
self.accumulation_steps = accumulation_steps
|
||||
self.use_tp = use_tp
|
||||
self.accumulative_meter = AccumulativeMeanMeter()
|
||||
self.offload_inference_models = offload_inference_models
|
||||
self.device = get_current_device()
|
||||
|
||||
def _before_fit(
|
||||
self,
|
||||
prompt_dataloader: DataLoader,
|
||||
pretrain_dataloader: Optional[DataLoader] = None,
|
||||
log_dir: Optional[str] = None,
|
||||
use_wandb: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
prompt_dataloader (DataLoader): the dataloader to use for prompt data
|
||||
pretrain_dataloader (DataLoader): the dataloader to use for pretrain data
|
||||
"""
|
||||
self.prompt_dataloader = CycledDataLoader(prompt_dataloader)
|
||||
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader) if pretrain_dataloader is not None else None
|
||||
|
||||
self.writer = None
|
||||
if use_wandb and is_rank_0():
|
||||
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
|
||||
import wandb
|
||||
|
||||
self.wandb_run = wandb.init(project="Coati-grpo", sync_tensorboard=True)
|
||||
if log_dir is not None and is_rank_0():
|
||||
import os
|
||||
import time
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
log_dir = os.path.join(log_dir, "grpo")
|
||||
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
|
||||
self.writer = SummaryWriter(log_dir=log_dir)
|
||||
|
||||
def _setup_update_phrase_dataload(self):
|
||||
"""
|
||||
why not use distributed_dataloader?
|
||||
if tp is used, input on each rank is the same and we use the same dataloader to feed same experience to all ranks
|
||||
if tp is not used, input on each rank is different and we expect different experiences to be fed to each rank
|
||||
"""
|
||||
self.dataloader = DataLoader(
|
||||
self.data_buffer,
|
||||
batch_size=self.train_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
pin_memory=self.dataloader_pin_memory,
|
||||
collate_fn=self.data_buffer.collate_fn,
|
||||
)
|
||||
|
||||
def _make_experience(self, collect_step: int) -> Experience:
|
||||
"""
|
||||
Make experience
|
||||
"""
|
||||
prompts = self.prompt_dataloader.next()
|
||||
if self.offload_inference_models:
|
||||
# TODO(ver217): this may be controlled by strategy if they are prepared by strategy
|
||||
self.experience_maker.initial_model.to(self.device)
|
||||
self.experience_maker.reward_model.to(self.device)
|
||||
if self.temperature_annealing_scheduler:
|
||||
self.generate_kwargs["temperature"] = self.temperature_annealing_scheduler.get_temperature()
|
||||
return self.experience_maker.make_experience(
|
||||
input_ids=prompts["input_ids"].to(get_current_device()),
|
||||
attention_mask=prompts["attention_mask"].to(get_current_device()),
|
||||
gt_answer=prompts["gt_answer"],
|
||||
**self.generate_kwargs,
|
||||
)
|
||||
|
||||
def _training_step(self, experience: Experience):
|
||||
"""
|
||||
Args:
|
||||
experience:
|
||||
sequences: [batch_size, prompt_length + response_length] --- <PAD>...<PAD><PROMPT>...<PROMPT><RESPONSE>...<RESPONSE><PAD>...<PAD>
|
||||
"""
|
||||
self.num_train_step += 1
|
||||
self.actor.train()
|
||||
num_actions = experience.action_log_probs.size(1)
|
||||
# policy loss
|
||||
|
||||
actor_logits = self.actor(input_ids=experience.sequences, attention_mask=experience.attention_mask)[
|
||||
"logits"
|
||||
] # [batch size, prompt_length + response_length]
|
||||
action_log_probs = calc_action_log_probs(actor_logits, experience.sequences, num_actions)
|
||||
actor_loss, to_skip, max_ratio = self.actor_loss_fn(
|
||||
action_log_probs,
|
||||
experience.action_log_probs,
|
||||
experience.advantages.unsqueeze(dim=-1).repeat_interleave(action_log_probs.size(-1), dim=-1),
|
||||
action_mask=experience.action_mask if self.apply_loss_mask else None,
|
||||
)
|
||||
# sequence that is not end properly are not counted in token cost
|
||||
token_cost = torch.sum(
|
||||
(experience.sequences[:, -num_actions:] != self.tokenizer.pad_token_id).to(torch.float), axis=-1
|
||||
).to(actor_logits.device)
|
||||
end_properly = experience.sequences[:, -1] == self.tokenizer.pad_token_id
|
||||
mean_token_cost = torch.sum(token_cost * end_properly) / torch.sum(end_properly)
|
||||
actor_loss = (1 - self.ptx_coef) * actor_loss
|
||||
if not to_skip:
|
||||
self.actor_booster.backward(loss=actor_loss, optimizer=self.actor_optim)
|
||||
|
||||
# ptx loss
|
||||
if self.ptx_coef != 0:
|
||||
batch = self.pretrain_dataloader.next()
|
||||
batch = to_device(batch, self.device)
|
||||
outputs = self.actor(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
|
||||
ptx_loss = outputs.loss
|
||||
ptx_loss = self.ptx_coef * ptx_loss
|
||||
self.actor_booster.backward(loss=ptx_loss, optimizer=self.actor_optim)
|
||||
|
||||
# sync
|
||||
actor_loss_mean = all_reduce_mean(tensor=actor_loss)
|
||||
max_ratio_mean = all_reduce_mean(tensor=max_ratio)
|
||||
reward_mean = all_reduce_mean(tensor=experience.reward.mean())
|
||||
advantages_mean = all_reduce_mean(tensor=experience.advantages.mean())
|
||||
kl_mean = all_reduce_mean(tensor=experience.kl.mean())
|
||||
mean_token_cost = all_reduce_mean(tensor=mean_token_cost)
|
||||
if self.ptx_coef != 0:
|
||||
ptx_loss_mean = all_reduce_mean(tensor=ptx_loss)
|
||||
|
||||
self.accumulative_meter.add("actor_loss", actor_loss_mean.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add("max_ratio", max_ratio_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add("reward", reward_mean.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add("advantages", advantages_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add("skip_ratio", 1.0 if to_skip else 0.0)
|
||||
self.accumulative_meter.add("mean_token_cost", mean_token_cost.to(torch.float16).item())
|
||||
self.accumulative_meter.add("kl", kl_mean.to(torch.float16).item())
|
||||
if self.ptx_coef != 0:
|
||||
self.accumulative_meter.add("ptx_loss", ptx_loss_mean.to(torch.float16).mean().item())
|
||||
|
||||
if self.num_train_step % self.accumulation_steps == self.accumulation_steps - 1:
|
||||
self.actor_optim.step()
|
||||
self.actor_optim.zero_grad()
|
||||
self.actor_scheduler.step()
|
||||
|
||||
if self.temperature_annealing_scheduler:
|
||||
self.temperature_annealing_scheduler.step_forward()
|
||||
|
||||
# preparing logging model output and corresponding rewards.
|
||||
if self.num_train_step % 10 == 1:
|
||||
response_text = self.experience_maker.tokenizer.batch_decode(
|
||||
experience.sequences, skip_special_tokens=True
|
||||
)
|
||||
for i in range(len(response_text)):
|
||||
response_text[i] = response_text[i] + f"\n\nReward: {experience.reward[i]}"
|
||||
|
||||
if self.writer and is_rank_0() and "wandb_run" in self.__dict__:
|
||||
# log output to wandb
|
||||
my_table = wandb.Table(
|
||||
columns=[f"sample response {i}" for i in range(len(response_text))], data=[response_text]
|
||||
)
|
||||
try:
|
||||
self.wandb_run.log({"sample_response": my_table})
|
||||
except OSError as e:
|
||||
self.coordinator.print_on_master(e)
|
||||
elif self.writer and is_rank_0():
|
||||
for line in response_text:
|
||||
self.coordinator.print_on_master(line)
|
||||
|
||||
if self.writer and is_rank_0():
|
||||
global_step = (self.num_train_step + 1) / self.accumulation_steps
|
||||
self.writer.add_scalar("train/max_ratio", self.accumulative_meter.get("max_ratio"), global_step)
|
||||
self.writer.add_scalar("train/skip_ratio", self.accumulative_meter.get("skip_ratio"), global_step)
|
||||
self.writer.add_scalar("train/actor_loss", self.accumulative_meter.get("actor_loss"), global_step)
|
||||
self.writer.add_scalar("train/lr_actor", self.actor_optim.param_groups[0]["lr"], global_step)
|
||||
if self.ptx_coef != 0:
|
||||
self.writer.add_scalar("train/ptx_loss", self.accumulative_meter.get("ptx_loss"), global_step)
|
||||
self.writer.add_scalar("reward", self.accumulative_meter.get("reward"), global_step)
|
||||
self.writer.add_scalar("token_cost", self.accumulative_meter.get("mean_token_cost"), global_step)
|
||||
self.writer.add_scalar("approx_kl", self.accumulative_meter.get("kl"), global_step)
|
||||
self.writer.add_scalar("advantages", self.accumulative_meter.get("advantages"), global_step)
|
||||
self.accumulative_meter.reset()
|
||||
|
||||
def _learn(self, update_step: int):
|
||||
"""
|
||||
Perform the learning step of the PPO algorithm.
|
||||
|
||||
Args:
|
||||
update_step (int): The current update step.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if self.offload_inference_models:
|
||||
self.experience_maker.initial_model.to("cpu")
|
||||
self.experience_maker.reward_model.to("cpu")
|
||||
# buffer may be empty at first, we should rebuild at each training
|
||||
if self.sample_buffer:
|
||||
experience = self.data_buffer.sample()
|
||||
self._on_learn_batch_start()
|
||||
experience.to_device(self.device)
|
||||
self._training_step(experience)
|
||||
self._on_learn_batch_end(experience)
|
||||
else:
|
||||
if isinstance(self.dataloader.sampler, DistributedSampler):
|
||||
self.dataloader.sampler.set_epoch(update_step)
|
||||
pbar = tqdm(self.dataloader, desc=f"Train epoch [{update_step + 1}]", disable=not is_rank_0())
|
||||
for experience in pbar:
|
||||
self._on_learn_batch_start()
|
||||
experience.to_device(self.device)
|
||||
self._training_step(experience)
|
||||
self._on_learn_batch_end(experience)
|
||||
|
||||
def _save_checkpoint(self, num_train_step: int = 0):
|
||||
"""
|
||||
Save the actor checkpoints with running states.
|
||||
|
||||
Args:
|
||||
num_train_step (int): The current num_train_step number.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
self.coordinator.print_on_master("\nStart saving actor checkpoint with running states")
|
||||
save_checkpoint(
|
||||
save_dir=self.actor_save_dir,
|
||||
booster=self.actor_booster,
|
||||
model=self.actor,
|
||||
optimizer=self.actor_optim,
|
||||
lr_scheduler=self.actor_scheduler,
|
||||
epoch=0,
|
||||
step=num_train_step + 1,
|
||||
batch_size=self.train_batch_size,
|
||||
coordinator=self.coordinator,
|
||||
)
|
||||
self.coordinator.print_on_master(
|
||||
f"Saved actor checkpoint at episode {(num_train_step + 1)} at folder {self.actor_save_dir}"
|
||||
)
|
Reference in New Issue
Block a user