mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
Add GRPO and Support RLVR for PPO (#6186)
* add grpo, support rlvr * add grpo, support rlvr * tested deepseek r1 pipeline * add ci * verify grpo r1 * verify grpo r1 * update readme, remove unused code * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove path * clean code * fix circular import * fix ci OOM * fix ci OOM * skip kto tp, fix qwen generation --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -0,0 +1,4 @@
|
||||
from .competition import math_competition_reward_fn
|
||||
from .gsm8k import gsm8k_reward_fn
|
||||
|
||||
__all__ = ["gsm8k_reward_fn", "math_competition_reward_fn"]
|
@@ -0,0 +1,26 @@
|
||||
import torch
|
||||
|
||||
from .utils import extract_solution, validate_response_structure
|
||||
|
||||
|
||||
def math_competition_reward_fn(input_ids, attention_mask, **kwargs):
|
||||
# apply varifiable reward
|
||||
# reward 10 points if the final answer is correct, reward 1 point if format is correct
|
||||
|
||||
gt_answer = kwargs["gt_answer"]
|
||||
tokenizer = kwargs["tokenizer"]
|
||||
s, e = kwargs["response_start"], kwargs["response_end"]
|
||||
reward = torch.tensor(0.0).to(input_ids.device)
|
||||
if gt_answer is None:
|
||||
return reward
|
||||
decoded_final_answer = tokenizer.decode(input_ids[s : e + 1], skip_special_tokens=True)
|
||||
final_answer, processed_str = extract_solution(decoded_final_answer)
|
||||
|
||||
format_valid = validate_response_structure(processed_str, kwargs["tags"])
|
||||
if not format_valid:
|
||||
return reward
|
||||
else:
|
||||
reward += 1.0
|
||||
if gt_answer.strip().replace(" ", "").lower() == final_answer.strip().replace(" ", "").lower():
|
||||
reward = reward + 9.0
|
||||
return reward
|
31
applications/ColossalChat/coati/utils/reward_score/gsm8k.py
Normal file
31
applications/ColossalChat/coati/utils/reward_score/gsm8k.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import torch
|
||||
|
||||
from .utils import extract_solution, validate_response_structure
|
||||
|
||||
|
||||
def gsm8k_reward_fn(input_ids, attention_mask, **kwargs):
|
||||
# apply varifiable reward
|
||||
# reward 10 points if the final answer is correct, reward 1 point if format is correct
|
||||
|
||||
gt_answer = kwargs["gt_answer"]
|
||||
tokenizer = kwargs["tokenizer"]
|
||||
s, e = kwargs["response_start"], kwargs["response_end"]
|
||||
reward = torch.tensor(0.0).to(input_ids.device)
|
||||
if gt_answer is None:
|
||||
return reward
|
||||
decoded_final_answer = tokenizer.decode(input_ids[s:e], skip_special_tokens=True)
|
||||
final_answer, processed_str = extract_solution(decoded_final_answer)
|
||||
is_valid = True
|
||||
try:
|
||||
int(final_answer.strip())
|
||||
except Exception:
|
||||
is_valid = False
|
||||
|
||||
format_valid = validate_response_structure(processed_str, kwargs["tags"])
|
||||
if not is_valid or not format_valid:
|
||||
return reward
|
||||
else:
|
||||
reward += 1.0
|
||||
if gt_answer.strip().replace(" ", "").lower() == final_answer.strip().replace(" ", "").lower():
|
||||
reward = reward + 9.0
|
||||
return reward
|
76
applications/ColossalChat/coati/utils/reward_score/utils.py
Normal file
76
applications/ColossalChat/coati/utils/reward_score/utils.py
Normal file
@@ -0,0 +1,76 @@
|
||||
# Copyright Unakar
|
||||
# Modified from https://github.com/Unakar/Logic-RL/blob/086373176ac198c97277ff50f4b6e7e1bfe669d3/verl/utils/reward_score/kk.py#L99
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import re
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
|
||||
def validate_response_structure(processed_str: str, tags: Dict = None) -> bool:
|
||||
"""Performs comprehensive validation of response structure.
|
||||
|
||||
Args:
|
||||
processed_str: Processed response string from the model
|
||||
|
||||
Returns:
|
||||
Boolean indicating whether all formatting requirements are met
|
||||
"""
|
||||
validation_passed = True
|
||||
# Check required tags
|
||||
if tags is None:
|
||||
tags = {
|
||||
"think_start": {"text": "<think>", "num_occur": 1},
|
||||
"think_end": {"text": "</think>", "num_occur": 1},
|
||||
"answer_start": {"text": "<answer>", "num_occur": 1},
|
||||
"answer_end": {"text": "</answer>", "num_occur": 1},
|
||||
}
|
||||
positions = {}
|
||||
for tag_name, tag_info in tags.items():
|
||||
tag_str = tag_info["text"]
|
||||
expected_count = tag_info["num_occur"]
|
||||
count = processed_str.count(tag_str)
|
||||
positions[tag_name] = pos = processed_str.find(tag_str)
|
||||
if count != expected_count:
|
||||
validation_passed = False
|
||||
# Verify tag order
|
||||
if (
|
||||
positions["think_start"] > positions["think_end"]
|
||||
or positions["think_end"] > positions["answer_start"]
|
||||
or positions["answer_start"] > positions["answer_end"]
|
||||
):
|
||||
validation_passed = False
|
||||
if len(processed_str) - positions["answer_end"] != len(tags["answer_end"]["text"]):
|
||||
validation_passed = False
|
||||
return validation_passed
|
||||
|
||||
|
||||
def extract_solution(solution_str: str) -> Tuple[Optional[str], str]:
|
||||
"""Extracts the final answer from the model's response string.
|
||||
|
||||
Args:
|
||||
solution_str: Raw response string from the language model
|
||||
|
||||
Returns:
|
||||
Tuple containing (extracted_answer, processed_string)
|
||||
"""
|
||||
|
||||
# Extract final answer using XML-style tags
|
||||
answer_pattern = r"<answer>(.*?)</answer>"
|
||||
matches = list(re.finditer(answer_pattern, solution_str, re.DOTALL))
|
||||
|
||||
if not matches:
|
||||
return None, solution_str
|
||||
|
||||
final_answer = matches[-1].group(1).strip()
|
||||
return final_answer, solution_str
|
Reference in New Issue
Block a user