[shardformer] test all optimizations (#4399)

[shardformer] test all optimizations

[shardformer] test all optimizations

[shardformer] test all optimizations
This commit is contained in:
flybird1111
2023-08-10 13:59:30 +08:00
committed by Hongxin Liu
parent 7a3dfd0c64
commit d2cd48e0be
4 changed files with 59 additions and 29 deletions

View File

@@ -1,6 +1,5 @@
import copy
from contextlib import nullcontext
from typing import Optional
from typing import Any, Callable, Dict, List, Optional
import torch
@@ -16,8 +15,8 @@ from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.lazy import LazyInitContext
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.shardformer.policies.auto_policy import Policy
from colossalai.shardformer._utils import getattr_
from colossalai.shardformer.policies.auto_policy import Policy
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
@@ -156,10 +155,12 @@ def run_forward_backward_with_hybrid_plugin(org_model: Module, sharded_model: Mo
else:
data = {k: v.cuda() for k, v in data.items()}
sharded_output = sharded_model(**data)
sharded_loss = criterion(sharded_output)
sharded_loss.backward()
sharded_optimizer.backward(sharded_loss)
org_model.train()
data = {k: v.cuda() for k, v in data.items()}
org_output = org_model(**data)
org_loss = criterion(org_output)
org_loss.backward()
@@ -181,12 +182,12 @@ def check_output_hidden_state(org_output: Tensor,
if stage_manager and stage_manager.is_last_stage():
sharded_hidden_state = torch.cat([output.last_hidden_state for output in sharded_output['outputs']], dim=0)
assert torch.allclose(org_hidden_state, sharded_hidden_state, atol=atol, rtol=rtol), \
assert torch.allclose(org_hidden_state.float(), sharded_hidden_state.float(), atol=atol, rtol=rtol), \
f"shard model's output hidden state is not equal to origin model's last hidden state\n{org_hidden_state}\n{sharded_hidden_state}"
def check_loss(org_loss: Tensor, sharded_loss: Tensor, atol: float = 1e-5, rtol: float = 1e-3):
assert torch.allclose(org_loss, sharded_loss, atol=atol, rtol=rtol), \
assert torch.allclose(org_loss.float(), sharded_loss.float(), atol=atol, rtol=rtol), \
f"shard model loss is not equal to origin model loss\n{org_loss}\n{sharded_loss}"
@@ -213,7 +214,7 @@ def check_weight(org_model: Module,
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' weight: {org_weight}, {sharded_weight}")
assert torch.allclose(org_weight, sharded_weight, atol=atol, rtol=rtol), \
assert torch.allclose(org_weight.float(), sharded_weight.float(), atol=atol, rtol=rtol), \
f"shard model weight is not equal to origin model weight\n{org_weight}\n{sharded_weight}"
@@ -244,6 +245,7 @@ def check_grad(org_model: Module,
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' grad: {org_grad}, {shard_grad}")
assert torch.allclose(
org_grad, shard_grad, rtol=rtol, atol=atol
org_grad.float(), shard_grad.float(), rtol=rtol, atol=atol
), f"error attribute '{suffix}', orgin model grad is not equal to shard model grad\n{org_grad}\n{shard_grad}"