mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 21:09:18 +00:00
[autoparallel] fix param hook issue in transform pass (#1755)
This commit is contained in:
@@ -171,22 +171,92 @@ def check_apply_bottleneck(rank, world_size, port):
|
||||
torch.cuda.set_rng_state(cuda_rng_state)
|
||||
origin_output.sum().backward()
|
||||
if rank == 0:
|
||||
print((gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 0, 4)).abs().sum())
|
||||
print((gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 0, 8)).abs().sum())
|
||||
print(
|
||||
f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 0, 4)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 0, 8)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 0, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 0, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 0, 1)).abs().sum()}"
|
||||
)
|
||||
print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}")
|
||||
|
||||
assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 0, 8).sum())
|
||||
assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 0, 2).sum())
|
||||
assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum())
|
||||
|
||||
if rank == 1:
|
||||
print((gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 4, 4)).abs().sum())
|
||||
print((gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 0, 8)).abs().sum())
|
||||
print(
|
||||
f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 4, 4)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 0, 8)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 2, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 2, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 1, 1)).abs().sum()}"
|
||||
)
|
||||
print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}")
|
||||
|
||||
assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 0, 8).sum())
|
||||
assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 2, 2).sum())
|
||||
assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum())
|
||||
|
||||
if rank == 2:
|
||||
print((gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 8, 4)).abs().sum())
|
||||
print((gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 8, 8)).abs().sum())
|
||||
print(
|
||||
f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 8, 4)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 8, 8)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 0, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 0, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 2, 1)).abs().sum()}"
|
||||
)
|
||||
print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}")
|
||||
|
||||
assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 8, 8).sum())
|
||||
assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 0, 2).sum())
|
||||
assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum())
|
||||
|
||||
if rank == 3:
|
||||
print((gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 12, 4)).abs().sum())
|
||||
print((gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 8, 8)).abs().sum())
|
||||
print(
|
||||
f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 12, 4)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 8, 8)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 2, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 2, 2)).abs().sum()}"
|
||||
)
|
||||
print(
|
||||
f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 3, 1)).abs().sum()}"
|
||||
)
|
||||
print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}")
|
||||
|
||||
assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 8, 8).sum())
|
||||
assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 2, 2).sum())
|
||||
assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum())
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
|
Reference in New Issue
Block a user