mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 14:41:53 +00:00
[shardformer] fix opt test hanging (#4521)
* [shardformer] fix opt test hanging * fix * test * test * test * fix test * fix test * remove print * add fix
This commit is contained in:
@@ -11,10 +11,11 @@ from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_ad
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_grad,
|
||||
check_all_grad_tensors,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
get_grad_tensors_for_check,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
unwrap_model,
|
||||
)
|
||||
@@ -40,6 +41,43 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# unwrap model
|
||||
opt_model = unwrap_model(org_model, 'OPTModel', 'model')
|
||||
shard_opt_model = unwrap_model(sharded_model, 'OPTModel', 'model')
|
||||
|
||||
row_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens'] # 'decoder.embed_tokens'
|
||||
col_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
||||
|
||||
# Save gradient tensors for comparison between the original model and the sharded model.
|
||||
grads_to_check = {}
|
||||
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
|
||||
if test_config['precision'] == 'fp32':
|
||||
atol, rtol = 1e-6, 1e-3
|
||||
else:
|
||||
atol, rtol = 4e-2, 4e-2
|
||||
row_layer_grads = get_grad_tensors_for_check(opt_model,
|
||||
shard_opt_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=0,
|
||||
verbose=False)
|
||||
col_layer_grads = get_grad_tensors_for_check(opt_model,
|
||||
shard_opt_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
grads_to_check.update(col_layer_grads)
|
||||
grads_to_check.update(row_layer_grads)
|
||||
|
||||
# optimizer executes step
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
if test_config['precision'] == 'fp32':
|
||||
@@ -51,38 +89,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||
|
||||
# unwrap model
|
||||
opt_model = unwrap_model(org_model, 'OPTModel', 'model')
|
||||
shard_opt_model = unwrap_model(sharded_model, 'OPTModel', 'model')
|
||||
|
||||
# check grad
|
||||
row_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens'] # 'decoder.embed_tokens'
|
||||
col_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
||||
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
|
||||
if test_config['precision'] == 'fp32':
|
||||
atol, rtol = 1e-6, 1e-3
|
||||
else:
|
||||
atol, rtol = 3e-2, 3e-2
|
||||
check_grad(opt_model,
|
||||
shard_opt_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=0,
|
||||
verbose=False)
|
||||
check_grad(opt_model,
|
||||
shard_opt_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
# check weights after optimizer.step()
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
# check weights
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
if test_config['precision'] == 'fp32':
|
||||
atol, rtol = 1e-3, 1e-3
|
||||
@@ -97,6 +104,9 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
# check grads
|
||||
check_all_grad_tensors(grads_to_check)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user