[fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174. (#1446)

* [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages

* [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages

* [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages

* [fx] activation checkpointing using Chen strategies.

* [fx] add test for ckpt_solver_chen

* mend

* [fx] add vanilla activation checkpoint search with test on resnet and densenet

* [fx] add vanilla activation checkpoint search with test on resnet and densenet

* [fx] add a namespace code for solver_chen.

* [fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174.

* [fx] fix lowercase naming conventions.
This commit is contained in:
Super Daniel
2022-08-12 11:28:50 +08:00
committed by GitHub
parent 821c6172e2
commit d40a9392ba
2 changed files with 62 additions and 22 deletions

View File

@@ -1,45 +1,71 @@
from typing import Set, Tuple
import torch
from torch.fx import GraphModule
import math
__all__ = ['chen_greedy', 'chen_sqrtn']
def chen_greedy(gm: GraphModule, B: int):
def chen_greedy(gm: GraphModule) -> GraphModule:
"""
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
Note that this algorithm targets at memory optimization only, using techniques in appendix A.
Usage:
B = 5 * 1024 * 1024 * 1024 # An approximate memory budget of 5GB
model = resnet18()
input_sample = torch.rand(4, 3, 224, 224)
gm = symbolic_trace(model)
MetaInfoProp(gm).run(input_sample)
gm = chen_greedy(gm, B)
gm = chen_greedy(gm)
Args:
gm (GraphModule): The module to add checkpoints
B (int): The approximate memory budget for this module.
"""
def grid_search(num_grids: int = 6) -> Set:
"""
Search ckpt strategy with b = 0, then run the allocation algorithm again with b = √xy.
Grid search over [√2/2 b, √2 b] for ckpt_opt over num_grids as in appendix A.
"""
_, b_approx = run_chen_greedy(0)
b_min, b_max = math.floor(b_approx / math.sqrt(2)), math.ceil(b_approx * math.sqrt(2))
b_opt = math.inf
for b in range(b_min, b_max, (b_max - b_min) // num_grids):
ckpt, b_approx = run_chen_greedy(b)
if b_approx < b_opt:
b_opt = b_approx
ckpt_opt = ckpt
return ckpt_opt
def run_chen_greedy(b: int = 0) -> Tuple[Set, int]:
"""
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
"""
ckpt = set()
temp = 0
x = 0
y = 0
for (idx, n) in enumerate(gm.graph.nodes):
temp += getattr(n, 'activation_size')
y = max(y, temp)
if temp > b:
x += getattr(n, 'activation_size')
temp = 0
ckpt.add(idx)
return ckpt, math.floor(math.sqrt(x * y))
gm.graph.lint() # make sure nodes are in topological order
temp = 0
x = 0
idx = 0
budget = B
for n in gm.graph.nodes:
B -= getattr(n, 'param_size')
assert B > 0, f'The memory budget {budget / 1024 ** 3:.2f} GB is not enough for model parameters of {gm}'
for n in gm.graph.nodes:
temp += getattr(n, 'activation_size')
if temp > B:
x += getattr(n, 'activation_size')
temp = x
setattr(n, 'activation_checkpoint', str(idx))
idx += 1
ckpt = grid_search(num_grids=6)
i = 0
for idx, n in enumerate(gm.graph.nodes):
if idx in ckpt:
setattr(n, 'activation_checkpoint', str(i))
i += 1
gm.recompile()
return gm
def chen_sqrtn(gm: GraphModule):
def chen_sqrtn(gm: GraphModule) -> GraphModule:
"""
This is the theoretical optimal strategy in https://arxiv.org/abs/1604.06174.