mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-21 17:40:33 +00:00
[doc] update booster tutorials (#3718)
* [booster] update booster tutorials#3717 * [booster] update booster tutorials#3717, fix * [booster] update booster tutorials#3717, update setup doc * [booster] update booster tutorials#3717, update setup doc * [booster] update booster tutorials#3717, update setup doc * [booster] update booster tutorials#3717, update setup doc * [booster] update booster tutorials#3717, update setup doc * [booster] update booster tutorials#3717, update setup doc * [booster] update booster tutorials#3717, rename colossalai booster.md * [booster] update booster tutorials#3717, rename colossalai booster.md * [booster] update booster tutorials#3717, rename colossalai booster.md * [booster] update booster tutorials#3717, fix * [booster] update booster tutorials#3717, fix * [booster] update tutorials#3717, update booster api doc * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, modify file * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3717, fix reference link * [booster] update tutorials#3713 * [booster] update tutorials#3713, modify file
This commit is contained in:
89
docs/source/zh-Hans/basics/booster_api.md
Normal file
89
docs/source/zh-Hans/basics/booster_api.md
Normal file
@@ -0,0 +1,89 @@
|
||||
# booster 使用
|
||||
作者: [Mingyan Jiang](https://github.com/jiangmingyan)
|
||||
|
||||
**预备知识:**
|
||||
- [分布式训练](../concepts/distributed_training.md)
|
||||
- [Colossal-AI 总览](../concepts/colossalai_overview.md)
|
||||
|
||||
**示例代码**
|
||||
- [使用booster训练](https://github.com/hpcaitech/ColossalAI/blob/main/examples/tutorial/new_api/cifar_resnet/README.md)
|
||||
|
||||
## 简介
|
||||
在我们的新设计中, `colossalai.booster` 代替 `colossalai.initialize` 将特征(例如,模型、优化器、数据加载器)无缝注入您的训练组件中。 使用booster API, 您可以更友好地将我们的并行策略整合到待训练模型中. 调用 `colossalai.booster` 是您进入训练循环前的基本操作。
|
||||
在下面的章节中,我们将介绍 `colossalai.booster` 是如何工作的以及使用时我们要注意的细节。
|
||||
|
||||
### Booster插件
|
||||
Booster插件是管理并行配置的重要组件(eg:gemini插件封装了gemini加速方案)。目前支持的插件如下:
|
||||
|
||||
***GeminiPlugin:*** GeminiPlugin插件封装了 gemini 加速解决方案,即基于块内存管理的 ZeRO优化方案。
|
||||
|
||||
***TorchDDPPlugin:*** TorchDDPPlugin插件封装了DDP加速方案,实现了模型级别的数据并行,可以跨多机运行。
|
||||
|
||||
***LowLevelZeroPlugin:*** LowLevelZeroPlugin插件封装了零冗余优化器的 1/2 阶段。阶段 1:切分优化器参数,分发到各并发进程或并发GPU上。阶段 2:切分优化器参数及梯度,分发到各并发进程或并发GPU上。
|
||||
|
||||
### Booster接口
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.boost }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.backward }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.no_sync }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.save_model }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.load_model }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.save_optimizer }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.load_optimizer }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.save_lr_scheduler }}
|
||||
|
||||
{{ autodoc:colossalai.booster.Booster.load_lr_scheduler }}
|
||||
|
||||
## 使用方法及示例
|
||||
|
||||
在使用colossalai训练时,首先需要在训练脚本的开头启动分布式环境,并创建需要使用的模型、优化器、损失函数、数据加载器等对象。之后,调用`colossalai.booster` 将特征注入到这些对象中,您就可以使用我们的booster API去进行您接下来的训练流程。
|
||||
|
||||
以下是一个伪代码示例,将展示如何使用我们的booster API进行模型训练:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from torch.optim import SGD
|
||||
from torchvision.models import resnet18
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import TorchDDPPlugin
|
||||
|
||||
def train():
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
plugin = TorchDDPPlugin()
|
||||
booster = Booster(plugin=plugin)
|
||||
model = resnet18()
|
||||
criterion = lambda x: x.mean()
|
||||
optimizer = SGD((model.parameters()), lr=0.001)
|
||||
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
|
||||
model, optimizer, criterion, _, scheduler = booster.boost(model, optimizer, criterion, lr_scheduler=scheduler)
|
||||
|
||||
x = torch.randn(4, 3, 224, 224)
|
||||
x = x.to('cuda')
|
||||
output = model(x)
|
||||
loss = criterion(output)
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.clip_grad_by_norm(1.0)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
|
||||
save_path = "./model"
|
||||
booster.save_model(model, save_path, True, True, "", 10, use_safetensors=use_safetensors)
|
||||
|
||||
new_model = resnet18()
|
||||
booster.load_model(new_model, save_path)
|
||||
```
|
||||
|
||||
[更多的设计细节请参考](https://github.com/hpcaitech/ColossalAI/discussions/3046)
|
||||
|
||||
<!-- doc-test-command: torchrun --standalone --nproc_per_node=1 booster_api.py -->
|
@@ -74,7 +74,7 @@ import colossalai
|
||||
args = colossalai.get_default_parser().parse_args()
|
||||
|
||||
# launch distributed environment
|
||||
colossalai.launch(config=<CONFIG>,
|
||||
colossalai.launch(config=args.config,
|
||||
rank=args.rank,
|
||||
world_size=args.world_size,
|
||||
host=args.host,
|
||||
@@ -93,12 +93,21 @@ PyTorch自带的启动器需要在每个节点上都启动命令才能启动多
|
||||
首先,我们需要在代码里指定我们的启动方式。由于这个启动器是PyTorch启动器的封装,那么我们自然而然应该使用`colossalai.launch_from_torch`。
|
||||
分布式环境所需的参数,如 rank, world size, host 和 port 都是由 PyTorch 启动器设置的,可以直接从环境变量中读取。
|
||||
|
||||
config.py
|
||||
```python
|
||||
BATCH_SIZE = 512
|
||||
LEARNING_RATE = 3e-3
|
||||
WEIGHT_DECAY = 0.3
|
||||
NUM_EPOCHS = 2
|
||||
```
|
||||
train.py
|
||||
```python
|
||||
import colossalai
|
||||
|
||||
colossalai.launch_from_torch(
|
||||
config=<CONFIG>,
|
||||
config="./config.py",
|
||||
)
|
||||
...
|
||||
```
|
||||
|
||||
接下来,我们可以轻松地在终端使用`colossalai run`来启动训练。下面的命令可以在当前机器上启动一个4卡的训练任务。
|
||||
|
Reference in New Issue
Block a user