mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 19:40:28 +00:00
[gemini]remove registered gradients hooks (#5696)
* fix gemini fix gemini * fix fix
This commit is contained in:
@@ -98,8 +98,14 @@ class GeminiDDP(ModelWrapper):
|
||||
verbose: bool = False,
|
||||
) -> None:
|
||||
assert mixed_precision in (torch.float16, torch.bfloat16)
|
||||
reuse_fp16_chunk = master_weights if not enable_gradient_accumulation else False
|
||||
self.enable_gradient_accumulation = enable_gradient_accumulation
|
||||
if chunk_config_dict is not None:
|
||||
self.chunk_manager = ChunkManager(chunk_config_dict, chunk_init_device)
|
||||
self.chunk_manager = ChunkManager(
|
||||
chunk_config_dict,
|
||||
chunk_init_device,
|
||||
reuse_fp16_chunk=reuse_fp16_chunk,
|
||||
)
|
||||
else:
|
||||
# some ugly hotfix for the compatibility with Lightning
|
||||
if search_range_m is None:
|
||||
@@ -112,6 +118,7 @@ class GeminiDDP(ModelWrapper):
|
||||
min_chunk_size_m=min_chunk_size_m,
|
||||
strict_ddp_flag=strict_ddp_mode,
|
||||
process_group=zero_group,
|
||||
reuse_fp16_chunk=reuse_fp16_chunk,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.gemini_manager = GeminiManager(
|
||||
@@ -128,7 +135,6 @@ class GeminiDDP(ModelWrapper):
|
||||
self.param_op_hook = GeminiZeROHook(self.gemini_manager)
|
||||
self.fp32_params: List[torch.Tensor] = list()
|
||||
self.fp16_params: List[ColoParameter] = list()
|
||||
self.overflow_counter = 0
|
||||
self.grads_device: Dict[torch.Tensor, torch.device] = dict()
|
||||
self.param2name: Dict[nn.Parameter, str] = dict()
|
||||
self.name2param: Dict[str, nn.Parameter] = dict()
|
||||
@@ -137,14 +143,8 @@ class GeminiDDP(ModelWrapper):
|
||||
self.zero_group = zero_group or _get_default_group()
|
||||
self.extra_dp_group = extra_dp_group
|
||||
|
||||
self.reuse_fp16_chunk = master_weights
|
||||
self.master_weights = master_weights
|
||||
|
||||
self.enable_gradient_accumulation = enable_gradient_accumulation
|
||||
if self.enable_gradient_accumulation:
|
||||
self.reuse_fp16_chunk = False
|
||||
self.accumulating_grads = False # Whether model is accumulating gradients
|
||||
|
||||
self._logger = get_dist_logger()
|
||||
|
||||
if self.gemini_manager._premade_memstats_:
|
||||
@@ -178,7 +178,29 @@ class GeminiDDP(ModelWrapper):
|
||||
if is_ddp_ignored(p):
|
||||
continue
|
||||
if p.requires_grad:
|
||||
p.register_hook(partial(self.grad_handle, p))
|
||||
p._grad_handle = p.register_hook(
|
||||
partial(
|
||||
GeminiDDP.grad_handle,
|
||||
chunk_manager=self.chunk_manager,
|
||||
param2name=self.param2name,
|
||||
grads_device=self.grads_device,
|
||||
master_weights=self.master_weights,
|
||||
enable_gradient_accumulation=self.enable_gradient_accumulation,
|
||||
p=p,
|
||||
)
|
||||
)
|
||||
|
||||
def remove_hooks(self):
|
||||
for p in self.module.parameters():
|
||||
if is_ddp_ignored(p):
|
||||
continue
|
||||
if p.requires_grad:
|
||||
assert hasattr(p, "_grad_handle")
|
||||
p._grad_handle.remove()
|
||||
delattr(p, "_grad_handle")
|
||||
|
||||
def __del__(self):
|
||||
self.remove_hooks()
|
||||
|
||||
def parameters(self, recurse: bool = True):
|
||||
return self.module.parameters(recurse)
|
||||
@@ -324,8 +346,8 @@ class GeminiDDP(ModelWrapper):
|
||||
f"{error_str}",
|
||||
)
|
||||
self._setup_grads_ptr()
|
||||
if self.enable_gradient_accumulation and not self.accumulating_grads:
|
||||
self.accumulating_grads = True # Turn on the state of gradient accumulation.
|
||||
if self.enable_gradient_accumulation and not self.chunk_manager.accumulating_grads:
|
||||
self.chunk_manager.accumulating_grads = True # Turn on the state of gradient accumulation.
|
||||
self._logger.debug(
|
||||
f"comp cuda demand time: {self.gemini_manager._comp_cuda_demand_time}, layout time: {self.gemini_manager._layout_time}, evict time: {self.gemini_manager._evict_time}, CPU->CUDA vol: {self.gemini_manager._h2d_volume}B, CUDA->CPU vol: {self.gemini_manager._d2h_volume}"
|
||||
)
|
||||
@@ -340,25 +362,34 @@ class GeminiDDP(ModelWrapper):
|
||||
def backward_by_grad(self, tensor, grad):
|
||||
raise RuntimeError("Gemini is not compatible with pipeline. backward_by_grad shoudn't be called in Gemini.")
|
||||
|
||||
def grad_handle(self, p, grad):
|
||||
@staticmethod
|
||||
def grad_handle(
|
||||
grad,
|
||||
chunk_manager: ChunkManager,
|
||||
param2name: Dict,
|
||||
grads_device: Dict,
|
||||
master_weights: bool,
|
||||
enable_gradient_accumulation: bool,
|
||||
p: nn.Parameter,
|
||||
):
|
||||
setattr(p, "_gemini_reduced", True)
|
||||
empty_grad = torch.empty_like(grad)
|
||||
free_storage(empty_grad)
|
||||
with torch._C.DisableTorchFunction():
|
||||
chunk = self.chunk_manager.get_chunk(p)
|
||||
chunk = chunk_manager.get_chunk(p)
|
||||
if chunk.tensors_info[p].state != TensorState.HOLD_AFTER_BWD:
|
||||
raise RuntimeError(
|
||||
f"Parameter `{self.param2name[p]}` failed at the gradient reduction. "
|
||||
f"Parameter `{param2name[p]}` failed at the gradient reduction. "
|
||||
"Some unsupported torch function is operated upon this parameter."
|
||||
)
|
||||
grad_chunk = chunk
|
||||
if not self.reuse_fp16_chunk:
|
||||
if not self.accumulating_grads:
|
||||
grad_chunk = self.chunk_manager.init_grad_chunk(chunk)
|
||||
if not chunk_manager.reuse_fp16_chunk:
|
||||
if not chunk_manager.accumulating_grads:
|
||||
grad_chunk = chunk_manager.init_grad_chunk(chunk)
|
||||
else:
|
||||
assert chunk.grad_chunk is not None
|
||||
if chunk.grad_chunk not in self.chunk_manager.accessed_chunks:
|
||||
grad_chunk = self.chunk_manager.rearrange_accumulated_grad_chunk(chunk)
|
||||
if chunk.grad_chunk not in chunk_manager.accessed_chunks:
|
||||
grad_chunk = chunk_manager.rearrange_accumulated_grad_chunk(chunk)
|
||||
else:
|
||||
grad_chunk = chunk.grad_chunk
|
||||
chunk.grad_chunk.l2_norm = None
|
||||
@@ -371,33 +402,33 @@ class GeminiDDP(ModelWrapper):
|
||||
chunk.tensor_trans_state(p, TensorState.HOLD)
|
||||
|
||||
grad_chunk.tensor_trans_state(p, TensorState.READY_FOR_REDUCE)
|
||||
if not self.accumulating_grads:
|
||||
grad_chunk.copy_tensor_to_chunk_slice(p, grad, update_ptr=self.reuse_fp16_chunk)
|
||||
if not chunk_manager.accumulating_grads:
|
||||
grad_chunk.copy_tensor_to_chunk_slice(p, grad, update_ptr=chunk_manager.reuse_fp16_chunk)
|
||||
else:
|
||||
grad_chunk.add_tensor_to_chunk_slice(p, grad)
|
||||
reduced = self.chunk_manager.reduce_chunk(grad_chunk)
|
||||
reduced = chunk_manager.reduce_chunk(grad_chunk)
|
||||
if reduced:
|
||||
if not self.reuse_fp16_chunk:
|
||||
if not chunk_manager.reuse_fp16_chunk:
|
||||
if chunk.keep_gathered:
|
||||
self.chunk_manager.fake_release_chunk(chunk)
|
||||
chunk_manager.fake_release_chunk(chunk)
|
||||
else:
|
||||
self.chunk_manager.release_chunk(chunk)
|
||||
chunk_manager.release_chunk(chunk)
|
||||
if grad_chunk.is_gathered:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
|
||||
if self.extra_dp_group is not None:
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
|
||||
else:
|
||||
grad_chunk.cuda_shard.div_(chunk.pg_size)
|
||||
if self.extra_dp_group is not None:
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
|
||||
# check overflow elements
|
||||
self.overflow_counter += grad_chunk.has_inf_or_nan
|
||||
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
|
||||
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
|
||||
if chunk.l2_norm_flag:
|
||||
grad_chunk.set_l2_norm()
|
||||
self.chunk_manager.move_chunk(grad_chunk, self.grads_device[p], force_copy=True)
|
||||
if not (self.master_weights) or (self.enable_gradient_accumulation):
|
||||
self.chunk_manager.move_chunk(chunk, self.grads_device[p], force_copy=True)
|
||||
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
|
||||
if not (master_weights) or (enable_gradient_accumulation):
|
||||
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
|
||||
return empty_grad
|
||||
|
||||
def zero_grad(self, set_to_none: bool = False) -> None:
|
||||
@@ -513,11 +544,11 @@ class GeminiDDP(ModelWrapper):
|
||||
|
||||
# get copies of fp32 parameters in CPU
|
||||
# as memory of fp16_params may be reused by grad, it's not reliable, we should use fp32_params and convert to fp16
|
||||
params = self.fp32_params if self.reuse_fp16_chunk else self.fp16_params
|
||||
params = self.fp32_params if self.chunk_manager.reuse_fp16_chunk else self.fp16_params
|
||||
param_to_save_data = self._get_param_to_save_data(params, only_rank_0)
|
||||
# get the mapping between copies and fp16 parameters
|
||||
p_mapping = dict()
|
||||
if self.reuse_fp16_chunk:
|
||||
if self.chunk_manager.reuse_fp16_chunk:
|
||||
for p, fp32_p in zip(self.fp16_params, self.fp32_params):
|
||||
name = self.param2name[p]
|
||||
assert fp32_p in param_to_save_data, "Parameter '{}' is neglected in the chunk list".format(name)
|
||||
@@ -713,7 +744,7 @@ class GeminiDDP(ModelWrapper):
|
||||
name = self.param2name[p]
|
||||
fp32_to_name[fp32_p] = name
|
||||
|
||||
params_to_load = self.fp32_params if self.reuse_fp16_chunk else self.fp16_params
|
||||
params_to_load = self.fp32_params if self.chunk_manager.reuse_fp16_chunk else self.fp16_params
|
||||
chunk_list = self.chunk_manager.get_chunks(params_to_load)
|
||||
for chunk in chunk_list:
|
||||
temp_chunk = get_temp_total_chunk_on_cuda(chunk, self.mixed_precision)
|
||||
@@ -728,7 +759,9 @@ class GeminiDDP(ModelWrapper):
|
||||
shard_fn = tensor.shard_fn
|
||||
gather_fn = tensor.gather_fn
|
||||
|
||||
parameter_name = fp32_to_name[tensor] if self.reuse_fp16_chunk else self.param2name[tensor]
|
||||
parameter_name = (
|
||||
fp32_to_name[tensor] if self.chunk_manager.reuse_fp16_chunk else self.param2name[tensor]
|
||||
)
|
||||
parameter_slice = temp_chunk[tensor_info.offset : tensor_info.end]
|
||||
load(
|
||||
parameter_name,
|
||||
@@ -900,7 +933,7 @@ class GeminiDDP(ModelWrapper):
|
||||
gathered_param = param if keep_vars else param.detach()
|
||||
else:
|
||||
# as memory of fp16 param may be reused, we should use fp32 param and then convert to fp16
|
||||
param_to_save = fp16_to_fp32[param] if self.reuse_fp16_chunk else param
|
||||
param_to_save = fp16_to_fp32[param] if self.chunk_manager.reuse_fp16_chunk else param
|
||||
if param_to_save not in gathered_param_buffer:
|
||||
chunk = self.chunk_manager.get_chunk(param_to_save)
|
||||
gathered_param_buffer.update(self._get_chunk_to_save_data(chunk, only_rank_0))
|
||||
|
Reference in New Issue
Block a user