diff --git a/README.md b/README.md
index 42549ac55..a50cf496a 100644
--- a/README.md
+++ b/README.md
@@ -25,6 +25,7 @@
 </div>
 
 ## Latest News
+* [2023/09] [One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific Llm Solution](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
 * [2023/09] [70 Billion Parameter LLaMA2 Model Training Accelerated by 195%](https://www.hpc-ai.tech/blog/70b-llama2-training)
 * [2023/07] [HPC-AI Tech Raises 22 Million USD in Series A Funding](https://www.hpc-ai.tech/blog/hpc-ai-tech-raises-22-million-usd-in-series-a-funding-to-fuel-team-expansion-and-business-growth)
 * [2023/07] [65B Model Pretraining Accelerated by 38%, Best Practices for Building LLaMA-Like Base Models Open-Source](https://www.hpc-ai.tech/blog/large-model-pretraining)
@@ -33,8 +34,6 @@
 * [2023/03] [AWS and Google Fund Colossal-AI with Startup Cloud Programs](https://www.hpc-ai.tech/blog/aws-and-google-fund-colossal-ai-with-startup-cloud-programs)
 * [2023/02] [Open Source Solution Replicates ChatGPT Training Process! Ready to go with only 1.6GB GPU Memory](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
 * [2023/01] [Hardware Savings Up to 46 Times for AIGC and  Automatic Parallelism](https://medium.com/pytorch/latest-colossal-ai-boasts-novel-automatic-parallelism-and-offers-savings-up-to-46x-for-stable-1453b48f3f02)
-* [2022/11] [Diffusion Pretraining and Hardware Fine-Tuning Can Be Almost 7X Cheaper](https://www.hpc-ai.tech/blog/diffusion-pretraining-and-hardware-fine-tuning-can-be-almost-7x-cheaper)
-* [2022/10] [Use a Laptop to Analyze 90% of Proteins, With a Single-GPU Inference Sequence Exceeding 10,000](https://www.hpc-ai.tech/blog/use-a-laptop-to-analyze-90-of-proteins-with-a-single-gpu-inference-sequence-exceeding)
 
 ## Table of Contents
 <ul>
@@ -43,6 +42,7 @@
  <li>
    <a href="#Colossal-AI-in-the-Real-World">Colossal-AI for Real World Applications</a>
    <ul>
+     <li><a href="#Colossal-LLaMA-2">Colossal-LLaMA-2: One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific Llm Solution</a></li>
      <li><a href="#ColossalChat">ColossalChat: An Open-Source Solution for Cloning ChatGPT With a Complete RLHF Pipeline</a></li>
      <li><a href="#AIGC">AIGC: Acceleration of Stable Diffusion</a></li>
      <li><a href="#Biomedicine">Biomedicine: Acceleration of AlphaFold Protein Structure</a></li>
@@ -127,6 +127,36 @@ distributed training and inference in a few lines.
 
 ## Colossal-AI in the Real World
 
+### Colossal-LLaMA-2
+
+- One half-day of training using a few hundred dollars yields similar results to mainstream large models, open-source and commercial-free domain-specific LLM solution.
+[[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
+[[blog]](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
+[[model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base)
+
+|                                |  Backbone  | Tokens Consumed |  |         MMLU         |     CMMLU     | AGIEval | GAOKAO | CEval  |
+| :----------------------------: | :--------: | :-------------: | :------------------: | :-----------: | :-----: | :----: | :----: | :------------------------------: |
+|                                |           |        -        |                |        5-shot        |    5-shot     | 5-shot  | 0-shot | 5-shot |
+|          Baichuan-7B           |     -      |      1.2T       |             |    42.32 (42.30)     | 44.53 (44.02) |  38.72  | 36.74  | 42.80  |
+|       Baichuan-13B-Base        |     -      |      1.4T       |             |    50.51 (51.60)     | 55.73 (55.30) |  47.20  | 51.41  | 53.60  |
+|       Baichuan2-7B-Base        |     -      |      2.6T       |             |    46.97 (54.16)     | 57.67 (57.07) |  45.76  | 52.60  | 54.00  |
+|       Baichuan2-13B-Base       |     -      |      2.6T       |             |    54.84 (59.17)     | 62.62 (61.97) |  52.08  | 58.25  | 58.10  |
+|           ChatGLM-6B           |     -      |      1.0T       |             |    39.67 (40.63)     |   41.17 (-)   |  40.10  | 36.53  | 38.90  |
+|          ChatGLM2-6B           |     -      |      1.4T       |             |    44.74 (45.46)     |   49.40 (-)   |  46.36  | 45.49  | 51.70  |
+|          InternLM-7B           |     -      |      1.6T       |                |    46.70 (51.00)     |   52.00 (-)   |  44.77  | 61.64  | 52.80  |
+|            Qwen-7B             |     -      |      2.2T       |             | 54.29 (56.70) | 56.03 (58.80) |  52.47  | 56.42  | 59.60  |
+|                                |            |                 |                 |                      |               |         |        |        |
+|           Llama-2-7B           |     -      |      2.0T       |             |    44.47 (45.30)     |   32.97 (-)   |  32.60  | 25.46  |   -    |
+| Linly-AI/Chinese-LLaMA-2-7B-hf | Llama-2-7B |      1.0T       |             |        37.43         |     29.92     |  32.00  | 27.57  |   -    |
+| wenge-research/yayi-7b-llama2  | Llama-2-7B |        -        |                |        38.56         |     31.52     |  30.99  | 25.95  |   -    |
+| ziqingyang/chinese-llama-2-7b  | Llama-2-7B |        -        |                |        33.86         |     34.69     |  34.52  | 25.18  |  34.2  |
+| TigerResearch/tigerbot-7b-base | Llama-2-7B |      0.3T       |             |        43.73         |     42.04     |  37.64  | 30.61  |   -    |
+|  LinkSoul/Chinese-Llama-2-7b   | Llama-2-7B |        -        |                |        48.41         |     38.31     |  38.45  | 27.72  |   -    |
+|       FlagAlpha/Atom-7B        | Llama-2-7B |      0.1T       |             |        49.96         |     41.10     |  39.83  | 33.00  |   -    |
+| IDEA-CCNL/Ziya-LLaMA-13B-v1.1  | Llama-13B  |      0.11T      |            |        50.25         |     40.99     |  40.04  | 30.54  |   -    |
+|  |  |  |  |  |  |  |  |  |
+|    **Colossal-LLaMA-2-7b-base**    | Llama-2-7B |      **0.0085T**      |            |        53.06         |     49.89     |  51.48  | 58.82  |  50.2  |
+
 ### ColossalChat
 
 <div align="center">
diff --git a/applications/Colossal-LLaMA-2/README.md b/applications/Colossal-LLaMA-2/README.md
index 7274abbad..f0a027d83 100644
--- a/applications/Colossal-LLaMA-2/README.md
+++ b/applications/Colossal-LLaMA-2/README.md
@@ -18,10 +18,14 @@
     - [Data](#data)
     - [Tokenizer](#tokenizer)
     - [Training Strategy](#training-strategy)
+    - [Bridging Any Domain-specific Large Models](#bridging-any-domain-specific-large-models)
 - [Citations](#citations)
 
 ## News
-* [2023/09] 🔥 TODO We released **Colossal-LLaMA-2-7B-base** based on LLaMA-2. [Download weights](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base).
+* [2023/09] [One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific Llm Solution](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
+[[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
+[[blog]](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
+[[model weights]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base)
 
 ## Colossal-LLaMA-2-7B
 The [Colossal-AI](https://github.com/hpcaitech/ColossalAI) team has introduced the open-source model **Colossal-LLaMA-2-7B-base**. This model, a derivation of LLaMA-2, has undergone continual pre-training involving approximately 8.5 billion tokens over a duration of 15 hours with 64 A800 GPUs. At a cost of **less than $1,000**, you can achieve results **similar to those that cost millions of dollars to pretrain from scratch**. It is licensed under the LLaMA-2 license and [Apache 2.0 License](https://github.com/hpcaitech/ColossalAI/blob/main/LICENSE) **without any additional commercial use restrictions**. This solution can also be used to build models of specific domain knowledge or tasks.
@@ -47,7 +51,7 @@ The generation config for all dataset is greedy search.
 |       Baichuan2-13B-Base       |     -      |      2.6T       |             |    54.84 (59.17)     | 62.62 (61.97) |  52.08  | 58.25  | 58.10  |
 |           ChatGLM-6B           |     -      |      1.0T       |             |    39.67 (40.63)     |   41.17 (-)   |  40.10  | 36.53  | 38.90  |
 |          ChatGLM2-6B           |     -      |      1.4T       |             |    44.74 (45.46)     |   49.40 (-)   |  46.36  | 45.49  | 51.70  |
-|          InternLM-7B           |     -      |        -        |                |    46.70 (51.00)     |   52.00 (-)   |  44.77  | 61.64  | 52.80  |
+|          InternLM-7B           |     -      |      1.6T       |                |    46.70 (51.00)     |   52.00 (-)   |  44.77  | 61.64  | 52.80  |
 |            Qwen-7B             |     -      |      2.2T       |             | 54.29 (56.70) | 56.03 (58.80) |  52.47  | 56.42  | 59.60  |
 |                                |            |                 |                 |                      |               |         |        |        |
 |           Llama-2-7B           |     -      |      2.0T       |             |    44.47 (45.30)     |   32.97 (-)   |  32.60  | 25.46  |   -    |
@@ -96,7 +100,7 @@ We also recorded the training logs for the experiment
 <img src="https://github.com/hpcaitech/public_assets/blob/main/applications/colossal-llama-2/trainingLossByTokens.jpeg?raw=true" width=600/>
 </p>
 
-### Import from Transformers
+### Import from Transformers (Inference)
 To load Colossal-LLaMA-2-7B-base model using Transformers, use the following code:
 ```Python
 from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -346,6 +350,13 @@ Our experiments have revealed that the distributions within the training dataset
 
 In an effort to achieve a more balanced distribution and exert control over the dataset's ordering, we have adopted a method where we divide each sub-dataset into discrete bins. These bins are then combined to construct individual data buckets, with one bin contributed by each sub-dataset.
 
+### Bridging Any Domain-specific Large Models
+Applying the above process to perform knowledge transfer in any field allows for the cost-effective construction of lightweight domain-specific foundational large models.
+
+<p id="domain_specific-llm" align="center">
+<img src="https://github.com/hpcaitech/public_assets/blob/main/applications/colossal-llama-2/domain_specific-llm.jpeg?raw=true" width=800/>
+</p>
+
 ## Citations
 ```bibtex
 @article{bian2021colossal,
diff --git a/docs/README-zh-Hans.md b/docs/README-zh-Hans.md
index bb5f49bc5..06977f947 100644
--- a/docs/README-zh-Hans.md
+++ b/docs/README-zh-Hans.md
@@ -24,6 +24,7 @@
 </div>
 
 ## 新闻
+* [2023/09] [One Half-Day of Training Using a Few Hundred Dollars Yields Similar Results to Mainstream Large Models, Open-Source and Commercial-Free Domain-Specific Llm Solution](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
 * [2023/09] [70 Billion Parameter LLaMA2 Model Training Accelerated by 195%](https://www.hpc-ai.tech/blog/70b-llama2-training)
 * [2023/07] [HPC-AI Tech Raises 22 Million USD in Series A Funding](https://www.hpc-ai.tech/blog/hpc-ai-tech-raises-22-million-usd-in-series-a-funding-to-fuel-team-expansion-and-business-growth)
 * [2023/07] [65B Model Pretraining Accelerated by 38%, Best Practices for Building LLaMA-Like Base Models Open-Source](https://www.hpc-ai.tech/blog/large-model-pretraining)
@@ -32,8 +33,6 @@
 * [2023/03] [AWS and Google Fund Colossal-AI with Startup Cloud Programs](https://www.hpc-ai.tech/blog/aws-and-google-fund-colossal-ai-with-startup-cloud-programs)
 * [2023/02] [Open Source Solution Replicates ChatGPT Training Process! Ready to go with only 1.6GB GPU Memory](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
 * [2023/01] [Hardware Savings Up to 46 Times for AIGC and  Automatic Parallelism](https://medium.com/pytorch/latest-colossal-ai-boasts-novel-automatic-parallelism-and-offers-savings-up-to-46x-for-stable-1453b48f3f02)
-* [2022/11] [Diffusion Pretraining and Hardware Fine-Tuning Can Be Almost 7X Cheaper](https://www.hpc-ai.tech/blog/diffusion-pretraining-and-hardware-fine-tuning-can-be-almost-7x-cheaper)
-* [2022/10] [Use a Laptop to Analyze 90% of Proteins, With a Single-GPU Inference Sequence Exceeding 10,000](https://www.hpc-ai.tech/blog/use-a-laptop-to-analyze-90-of-proteins-with-a-single-gpu-inference-sequence-exceeding)
 
 ## 目录
 <ul>
@@ -42,6 +41,7 @@
  <li>
    <a href="#Colossal-AI-in-the-Real-World">Colossal-AI 成功案例</a>
    <ul>
+     <li><a href="#Colossal-LLaMA-2">Colossal-LLaMA-2: 千元预算半天训练,效果媲美主流大模型,开源可商用中文LLaMA-2</a></li>
      <li><a href="#ColossalChat">ColossalChat:完整RLHF流程0门槛克隆ChatGPT</a></li>
      <li><a href="#AIGC">AIGC: 加速 Stable Diffusion</a></li>
      <li><a href="#生物医药">生物医药: 加速AlphaFold蛋白质结构预测</a></li>
@@ -120,6 +120,37 @@ Colossal-AI 为您提供了一系列并行组件。我们的目标是让您的
 <p align="right">(<a href="#top">返回顶端</a>)</p>
 
 ## Colossal-AI 成功案例
+### Colossal-LLaMA-2
+
+- 千元预算半天训练,效果媲美主流大模型,开源可商用中文LLaMA-2
+[[代码]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA-2)
+[[博客]](https://www.hpc-ai.tech/blog/one-half-day-of-training-using-a-few-hundred-dollars-yields-similar-results-to-mainstream-large-models-open-source-and-commercial-free-domain-specific-llm-solution)
+[[模型权重]](https://huggingface.co/hpcai-tech/Colossal-LLaMA-2-7b-base)
+
+|                                |  Backbone  | Tokens Consumed |  |         MMLU         |     CMMLU     | AGIEval | GAOKAO | CEval  |
+| :----------------------------: | :--------: | :-------------: | :------------------: | :-----------: | :-----: | :----: | :----: | :------------------------------: |
+|                                |           |        -        |                |        5-shot        |    5-shot     | 5-shot  | 0-shot | 5-shot |
+|          Baichuan-7B           |     -      |      1.2T       |             |    42.32 (42.30)     | 44.53 (44.02) |  38.72  | 36.74  | 42.80  |
+|       Baichuan-13B-Base        |     -      |      1.4T       |             |    50.51 (51.60)     | 55.73 (55.30) |  47.20  | 51.41  | 53.60  |
+|       Baichuan2-7B-Base        |     -      |      2.6T       |             |    46.97 (54.16)     | 57.67 (57.07) |  45.76  | 52.60  | 54.00  |
+|       Baichuan2-13B-Base       |     -      |      2.6T       |             |    54.84 (59.17)     | 62.62 (61.97) |  52.08  | 58.25  | 58.10  |
+|           ChatGLM-6B           |     -      |      1.0T       |             |    39.67 (40.63)     |   41.17 (-)   |  40.10  | 36.53  | 38.90  |
+|          ChatGLM2-6B           |     -      |      1.4T       |             |    44.74 (45.46)     |   49.40 (-)   |  46.36  | 45.49  | 51.70  |
+|          InternLM-7B           |     -      |      1.6T       |                |    46.70 (51.00)     |   52.00 (-)   |  44.77  | 61.64  | 52.80  |
+|            Qwen-7B             |     -      |      2.2T       |             | 54.29 (56.70) | 56.03 (58.80) |  52.47  | 56.42  | 59.60  |
+|                                |            |                 |                 |                      |               |         |        |        |
+|           Llama-2-7B           |     -      |      2.0T       |             |    44.47 (45.30)     |   32.97 (-)   |  32.60  | 25.46  |   -    |
+| Linly-AI/Chinese-LLaMA-2-7B-hf | Llama-2-7B |      1.0T       |             |        37.43         |     29.92     |  32.00  | 27.57  |   -    |
+| wenge-research/yayi-7b-llama2  | Llama-2-7B |        -        |                |        38.56         |     31.52     |  30.99  | 25.95  |   -    |
+| ziqingyang/chinese-llama-2-7b  | Llama-2-7B |        -        |                |        33.86         |     34.69     |  34.52  | 25.18  |  34.2  |
+| TigerResearch/tigerbot-7b-base | Llama-2-7B |      0.3T       |             |        43.73         |     42.04     |  37.64  | 30.61  |   -    |
+|  LinkSoul/Chinese-Llama-2-7b   | Llama-2-7B |        -        |                |        48.41         |     38.31     |  38.45  | 27.72  |   -    |
+|       FlagAlpha/Atom-7B        | Llama-2-7B |      0.1T       |             |        49.96         |     41.10     |  39.83  | 33.00  |   -    |
+| IDEA-CCNL/Ziya-LLaMA-13B-v1.1  | Llama-13B  |      0.11T      |            |        50.25         |     40.99     |  40.04  | 30.54  |   -    |
+|  |  |  |  |  |  |  |  |  |
+|    **Colossal-LLaMA-2-7b-base**    | Llama-2-7B |      **0.0085T**      |            |        53.06         |     49.89     |  51.48  | 58.82  |  50.2  |
+
+
 ### ColossalChat
 
 <div align="center">