mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-19 00:16:51 +00:00
[Infer] Revise and Adapt Triton Kernels for Spec-Dec (#5401)
* [Infer/Fix] Fix Dependency in test - RMSNorm kernel (#5399) fix dependency in pytest * resolve conflicts for revising flash-attn * adapt kv cache copy kernel for spec-dec * fix seqlen-n kvcache copy kernel/tests * test kvcache copy - use torch.equal * add assertions * (trivial) comment out
This commit is contained in:
@@ -11,7 +11,7 @@ if HAS_TRITON:
|
||||
from .context_attn_unpad import context_attention_unpadded
|
||||
from .flash_decoding import flash_decoding_attention
|
||||
from .fused_rotary_embedding import fused_rotary_embedding
|
||||
from .kvcache_copy import copy_kv_to_blocked_cache
|
||||
from .kvcache_copy import copy_k_to_blocked_cache, copy_kv_to_blocked_cache
|
||||
from .no_pad_rotary_embedding import decoding_fused_rotary_embedding, rotary_embedding
|
||||
from .rms_layernorm import rms_layernorm
|
||||
from .rotary_cache_copy import get_xine_cache
|
||||
@@ -20,6 +20,7 @@ if HAS_TRITON:
|
||||
__all__ = [
|
||||
"context_attention_unpadded",
|
||||
"flash_decoding_attention",
|
||||
"copy_k_to_blocked_cache",
|
||||
"copy_kv_to_blocked_cache",
|
||||
"softmax",
|
||||
"rms_layernorm",
|
||||
|
@@ -9,13 +9,14 @@ import triton.language as tl
|
||||
# Triton 2.1.0
|
||||
@triton.jit
|
||||
def _flash_decoding_fwd_kernel(
|
||||
Q, # [batch_size, head_num, q_len(1), head_dim]
|
||||
Q, # [batch_size * q_len, head_num, head_dim]
|
||||
KCache, # [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
VCache, # [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
block_tables, # [batch_size, max_blocks_per_sequence]
|
||||
mid_o, # [batch_size, head_num, kv_split_num, head_dim]
|
||||
mid_o_lse, # [batch_size, head_num, kv_split_num]
|
||||
mid_o, # [batch_size * q_len, head_num, kv_split_num, head_dim]
|
||||
mid_o_lse, # [batch_size * q_len, head_num, kv_split_num]
|
||||
kv_seq_len, # [batch_size]
|
||||
q_len,
|
||||
batch_size,
|
||||
stride_qt,
|
||||
stride_qh,
|
||||
@@ -39,44 +40,37 @@ def _flash_decoding_fwd_kernel(
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
cur_seq_idx = tl.program_id(0)
|
||||
cur_token_idx = tl.program_id(0)
|
||||
cur_seq_idx = cur_token_idx // q_len
|
||||
if cur_seq_idx >= batch_size:
|
||||
return
|
||||
cur_head_idx = tl.program_id(1)
|
||||
block_start_kv = tl.program_id(2) # for splitting k/v
|
||||
|
||||
cur_kv_head_idx = cur_head_idx // KV_GROUPS
|
||||
offsets_dmodel = tl.arange(0, HEAD_DIM)
|
||||
|
||||
# NOTE It requires BLOCK_KV and BLOCK_SIZE to be the same
|
||||
# TODO might want to replace with BLOCK_KV % BLOCK_SIZE == 0 (optimize BLOCK_KV as multiple of BLOCK_SIZE)
|
||||
# and then support calculating multiple kv cache blocks on an instance
|
||||
tl.static_assert(BLOCK_KV == BLOCK_SIZE)
|
||||
|
||||
# get the current (kv) sequence length from provided context lengths tensor
|
||||
# get the current (kv) sequence length
|
||||
cur_kv_seq_len = tl.load(kv_seq_len + cur_seq_idx)
|
||||
|
||||
offsets_q = cur_seq_idx * stride_qt + cur_head_idx * stride_qh + offsets_dmodel * stride_qd
|
||||
q = tl.load(Q + offsets_q)
|
||||
|
||||
# block table for the current sequence
|
||||
block_table_ptr = block_tables + cur_seq_idx * stride_bts
|
||||
|
||||
# actually current block table current block start idx
|
||||
# cur_bt_start_idx = block_start_kv * (BLOCK_KV // BLOCK_SIZE)
|
||||
cur_bt_start_idx = block_start_kv
|
||||
cur_block_id = tl.load(block_table_ptr + cur_bt_start_idx * stride_btb)
|
||||
|
||||
if block_start_kv * BLOCK_KV >= cur_kv_seq_len:
|
||||
return
|
||||
|
||||
offsets_dmodel = tl.arange(0, HEAD_DIM)
|
||||
offsets_q = cur_token_idx * stride_qt + cur_head_idx * stride_qh + offsets_dmodel * stride_qd
|
||||
q = tl.load(Q + offsets_q)
|
||||
# block table for the current sequence
|
||||
block_table_ptr = block_tables + cur_seq_idx * stride_bts
|
||||
# cur_bt_start_idx = block_start_kv * (BLOCK_KV // BLOCK_SIZE)
|
||||
# cur_block_id = tl.load(block_table_ptr + cur_bt_start_idx * stride_btb)
|
||||
cur_block_id = tl.load(block_table_ptr + block_start_kv * stride_btb)
|
||||
cur_occupied_size = tl.where(
|
||||
(block_start_kv + 1) * BLOCK_SIZE <= cur_kv_seq_len, BLOCK_SIZE, cur_kv_seq_len - block_start_kv * BLOCK_SIZE
|
||||
)
|
||||
tl.device_assert(cur_occupied_size >= 0)
|
||||
|
||||
cur_kv_head_idx = cur_head_idx // KV_GROUPS
|
||||
offset_kvcache = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh
|
||||
|
||||
K_block_ptr = tl.make_block_ptr(
|
||||
base=KCache + offset_kvcache,
|
||||
shape=(cur_occupied_size, HEAD_DIM),
|
||||
@@ -115,14 +109,14 @@ def _flash_decoding_fwd_kernel(
|
||||
acc = acc / l
|
||||
|
||||
offsets_mid_o = (
|
||||
cur_seq_idx * stride_mid_ot
|
||||
cur_token_idx * stride_mid_ot
|
||||
+ cur_head_idx * stride_mid_oh
|
||||
+ block_start_kv * stride_mid_ob
|
||||
+ offsets_dmodel * stride_mid_od
|
||||
)
|
||||
tl.store(mid_o + offsets_mid_o, acc)
|
||||
offsets_mid_o_lse = (
|
||||
cur_seq_idx * stride_mid_o_lset + cur_head_idx * stride_mid_o_lseh + block_start_kv * stride_mid_o_lseb
|
||||
cur_token_idx * stride_mid_o_lset + cur_head_idx * stride_mid_o_lseh + block_start_kv * stride_mid_o_lseb
|
||||
)
|
||||
# logsumexp L^(j) = m^(j) + log(l^(j))
|
||||
tl.store(mid_o_lse + offsets_mid_o_lse, m + tl.log(l))
|
||||
@@ -135,6 +129,7 @@ def _flash_decoding_fwd_reduce_kernel(
|
||||
mid_o_lse, # [batch_size, head_num, kv_split_num]
|
||||
O, # [batch_size, num_heads, head_dim] or [batch_size, 1, num_heads, head_dim]
|
||||
kv_seq_len,
|
||||
q_len,
|
||||
batch_size,
|
||||
stride_mid_ot,
|
||||
stride_mid_oh,
|
||||
@@ -149,7 +144,8 @@ def _flash_decoding_fwd_reduce_kernel(
|
||||
BLOCK_KV: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
cur_seq_idx = tl.program_id(0)
|
||||
cur_token_idx = tl.program_id(0)
|
||||
cur_seq_idx = cur_token_idx // q_len
|
||||
if cur_seq_idx >= batch_size:
|
||||
return
|
||||
cur_head_idx = tl.program_id(1)
|
||||
@@ -164,8 +160,8 @@ def _flash_decoding_fwd_reduce_kernel(
|
||||
l = 0.0 # sum exp
|
||||
acc = tl.zeros([HEAD_DIM], dtype=tl.float32)
|
||||
|
||||
offsets_mid_o = cur_seq_idx * stride_mid_ot + cur_head_idx * stride_mid_oh + offsets_dmodel
|
||||
offset_mid_lse = cur_seq_idx * stride_o_lset + cur_head_idx * stride_o_lseh
|
||||
offsets_mid_o = cur_token_idx * stride_mid_ot + cur_head_idx * stride_mid_oh + offsets_dmodel
|
||||
offset_mid_lse = cur_token_idx * stride_o_lset + cur_head_idx * stride_o_lseh
|
||||
for block_i in range(0, kv_split_num, 1):
|
||||
mid_o_block = tl.load(mid_o + offsets_mid_o + block_i * stride_mid_ob)
|
||||
lse = tl.load(mid_o_lse + offset_mid_lse + block_i * stride_o_lseb)
|
||||
@@ -179,7 +175,7 @@ def _flash_decoding_fwd_reduce_kernel(
|
||||
m_i = m_ij
|
||||
|
||||
acc = acc / l
|
||||
offsets_O = cur_seq_idx * stride_ot + cur_head_idx * stride_oh + offsets_dmodel
|
||||
offsets_O = cur_token_idx * stride_ot + cur_head_idx * stride_oh + offsets_dmodel
|
||||
tl.store(O + offsets_O, acc.to(O.type.element_ty))
|
||||
return
|
||||
|
||||
@@ -199,12 +195,14 @@ def flash_decoding_attention(
|
||||
mid_output_lse: torch.Tensor = None,
|
||||
sm_scale: int = None,
|
||||
kv_group_num: int = 1,
|
||||
q_len: int = 1,
|
||||
):
|
||||
"""
|
||||
Flash decoding implemented with a blocked KV Cache (PagedAttention) during decoding stage.
|
||||
|
||||
Args:
|
||||
q (torch.Tensor): [bsz, num_heads, head_dim]
|
||||
q (torch.Tensor): [bsz * q_len, num_heads, head_dim]
|
||||
q_len > 1 only for verification process in speculative-decoding.
|
||||
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
v_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
kv_seq_len (torch.Tensor): [batch_size]
|
||||
@@ -212,19 +210,25 @@ def flash_decoding_attention(
|
||||
block_tables (torch.Tensor): [batch_size, max_blocks_per_sequence]
|
||||
max_seq_len_in_batch (int): Maximum sequence length in the batch.
|
||||
output (torch.Tensor): [bsz, num_heads * head_dim]
|
||||
mid_output (torch.Tensor): [ max_bsz , num_heads, kv_max_split_num, head_dim]
|
||||
mid_output (torch.Tensor): [max_bsz * q_len, num_heads, kv_max_split_num, head_dim]
|
||||
Intermediate output tensor. `max_bsz` should be greater than or equal to `bsz`.
|
||||
mid_output_lse (torch.Tensor): [ max_bsz , num_heads, kv_max_split_num]
|
||||
q_len > 1 only for verification process in speculative-decoding.
|
||||
mid_output_lse (torch.Tensor): [max_bsz * q_len, num_heads, kv_max_split_num]
|
||||
Log-sum-exp of intermediate output. `max_bsz` should be greater than or equal to `bsz`.
|
||||
q_len > 1 only for verification process in speculative-decoding.
|
||||
block_size (int): Size of each block in the blocked key/value cache.
|
||||
num_kv_group (int, optional): Number of key/value groups. Defaults to 1.
|
||||
q_length (int): Query length. Use for speculative decoding when `q_length` > 1 (i.e. the last n tokens).
|
||||
Defaults to 1.
|
||||
|
||||
Returns:
|
||||
Output tensor with shape [bsz, num_heads * head_dim]
|
||||
Output tensor with shape [bsz * q_len, num_heads * head_dim]
|
||||
"""
|
||||
q = q.squeeze() if q.dim() == 4 else q
|
||||
assert q.dim() == 3, f"Incompatible q dim: {q.dim()}"
|
||||
bsz, num_heads, head_dim = q.shape
|
||||
n_tokens, num_heads, head_dim = q.shape
|
||||
assert n_tokens % q_len == 0, "Invalid q_len"
|
||||
bsz = n_tokens // q_len
|
||||
|
||||
assert head_dim in {32, 64, 128, 256}
|
||||
assert kv_seq_len.shape[0] == block_tables.shape[0] == bsz, (
|
||||
@@ -247,22 +251,31 @@ def flash_decoding_attention(
|
||||
max_seq_len_in_batch = kv_seq_len.max().item() if max_seq_len_in_batch is None else max_seq_len_in_batch
|
||||
# For compatibility (TODO revise modeling in future)
|
||||
kv_max_split_num = (max_seq_len_in_batch + BLOCK_KV - 1) // BLOCK_KV
|
||||
mid_output = (
|
||||
torch.zeros(size=(bsz, num_heads, kv_max_split_num, head_dim), dtype=torch.float32, device=q.device)
|
||||
if mid_output is None
|
||||
else mid_output
|
||||
)
|
||||
mid_output_lse = (
|
||||
torch.zeros(size=(bsz, num_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
|
||||
if mid_output_lse is None
|
||||
else mid_output_lse
|
||||
)
|
||||
|
||||
if mid_output is None:
|
||||
mid_output = torch.empty(
|
||||
(bsz * q_len, num_heads, kv_max_split_num, head_dim), dtype=torch.float32, device=q.device
|
||||
)
|
||||
if mid_output_lse is None:
|
||||
mid_output_lse = torch.empty((bsz * q_len, num_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
|
||||
if output is None:
|
||||
# A hack to prevent `view` operation in modeling
|
||||
output = torch.empty((bsz * q_len, num_heads * head_dim), dtype=q.dtype, device=q.device)
|
||||
|
||||
assert (
|
||||
mid_output.size(2) == mid_output_lse.size(2) >= kv_max_split_num
|
||||
), "Incompatible kv split number of intermediate output tensors"
|
||||
assert (
|
||||
mid_output.size(0) == mid_output_lse.size(0) >= output.size(0) == n_tokens
|
||||
), f"Incompatible first dimension of output tensors"
|
||||
|
||||
# NOTE use `triton.next_power_of_2` here to utilize the cache mechanism of triton
|
||||
# To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred)
|
||||
grid = (triton.next_power_of_2(bsz), num_heads, triton.cdiv(triton.next_power_of_2(max_seq_len_in_batch), BLOCK_KV))
|
||||
output = torch.empty((bsz, num_heads * head_dim), dtype=q.dtype, device=q.device) if output is None else output
|
||||
|
||||
grid = (
|
||||
triton.next_power_of_2(bsz * q_len),
|
||||
num_heads,
|
||||
triton.cdiv(triton.next_power_of_2(max_seq_len_in_batch), BLOCK_KV),
|
||||
)
|
||||
_flash_decoding_fwd_kernel[grid](
|
||||
q,
|
||||
k_cache,
|
||||
@@ -271,6 +284,7 @@ def flash_decoding_attention(
|
||||
mid_output,
|
||||
mid_output_lse,
|
||||
kv_seq_len,
|
||||
q_len,
|
||||
bsz,
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
@@ -295,13 +309,13 @@ def flash_decoding_attention(
|
||||
HEAD_DIM=head_dim,
|
||||
)
|
||||
|
||||
grid = (triton.next_power_of_2(bsz), num_heads)
|
||||
|
||||
grid = (triton.next_power_of_2(bsz * q_len), num_heads)
|
||||
_flash_decoding_fwd_reduce_kernel[grid](
|
||||
mid_output,
|
||||
mid_output_lse,
|
||||
output,
|
||||
kv_seq_len,
|
||||
q_len,
|
||||
bsz,
|
||||
mid_output.stride(0),
|
||||
mid_output.stride(1),
|
||||
|
@@ -3,6 +3,50 @@ import triton
|
||||
import triton.language as tl
|
||||
|
||||
|
||||
# Triton 2.1.0
|
||||
@triton.jit
|
||||
def _copy_to_kcache_seqlen_n_kernel(
|
||||
KV, # K or V
|
||||
KVCache, # KCache or VCache
|
||||
BLOCK_TABLES,
|
||||
context_lengths,
|
||||
stride_kt,
|
||||
stride_kh,
|
||||
stride_kd,
|
||||
stride_cacheb,
|
||||
stride_cacheh,
|
||||
stride_cachebs,
|
||||
stride_cached,
|
||||
stride_bts,
|
||||
stride_btb,
|
||||
block_size,
|
||||
n,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
cur_token_idx = tl.program_id(0)
|
||||
cur_seq_idx = cur_token_idx // n
|
||||
cur_token_shift = cur_token_idx - (n * (cur_seq_idx + 1))
|
||||
# cur_token_shift = cur_token_idx - n * cur_seq_idx
|
||||
cur_kv_head_idx = tl.program_id(1)
|
||||
|
||||
past_kv_seq_len = tl.load(context_lengths + cur_seq_idx) + cur_token_shift
|
||||
last_bt_block_idx = past_kv_seq_len // block_size
|
||||
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
|
||||
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
|
||||
offset_last_block = past_kv_seq_len % block_size
|
||||
offsets_dmodel = tl.arange(0, HEAD_DIM)
|
||||
offsets_kv = cur_token_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
|
||||
kv = tl.load(KV + offsets_kv)
|
||||
offsets_kvcache = (
|
||||
block_id * stride_cacheb
|
||||
+ cur_kv_head_idx * stride_cacheh
|
||||
+ offset_last_block * stride_cachebs
|
||||
+ offsets_dmodel * stride_cached
|
||||
)
|
||||
tl.store(KVCache + offsets_kvcache, kv)
|
||||
return
|
||||
|
||||
|
||||
# Triton 2.1.0
|
||||
@triton.jit
|
||||
def _copy_to_kvcache_seqlen1_kernel(
|
||||
@@ -40,10 +84,11 @@ def _copy_to_kvcache_seqlen1_kernel(
|
||||
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
|
||||
offsets_in_last_block = past_kv_seq_len % block_size
|
||||
offsets_dmodel = tl.arange(0, HEAD_DIM)
|
||||
offsets_kv = cur_seq_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
|
||||
offsets_k = cur_seq_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
|
||||
offsets_v = cur_seq_idx * stride_vt + cur_kv_head_idx * stride_vh + offsets_dmodel * stride_vd
|
||||
|
||||
k = tl.load(K + offsets_kv)
|
||||
v = tl.load(V + offsets_kv)
|
||||
k = tl.load(K + offsets_k)
|
||||
v = tl.load(V + offsets_v)
|
||||
|
||||
offsets_kcache = (
|
||||
block_id * stride_cachekb
|
||||
@@ -63,6 +108,64 @@ def _copy_to_kvcache_seqlen1_kernel(
|
||||
return
|
||||
|
||||
|
||||
def copy_k_to_blocked_cache(
|
||||
k: torch.Tensor, k_cache: torch.Tensor, kv_lengths: torch.Tensor, block_tables: torch.Tensor, n: int = 1
|
||||
):
|
||||
"""
|
||||
Copy keys or values to the blocked key/value cache during decoding stage.
|
||||
|
||||
Args:
|
||||
k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys or values during decoding with seq len 1.
|
||||
[bsz * n, num_kv_heads, head_dim] - Keys or values with seq len n
|
||||
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked key or value cache.
|
||||
kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
|
||||
block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
|
||||
n (int): Number of tokens to copy for each sequence. Default to 1.
|
||||
"""
|
||||
assert k.size(-1) == k_cache.size(-1), "Incompatible head dim"
|
||||
assert k.dtype == k_cache.dtype, "Expected consistent dtype for tensor and cache."
|
||||
|
||||
k = k.reshape(-1, k.size(-2), k.size(-1)) if k.dim() == 4 else k
|
||||
assert k.dim() == 3, f"Invalid k dim {k.dim()}"
|
||||
bsz, num_kv_heads, head_dim = k.shape
|
||||
# NOTE when n > 1, the shape of k is [bsz * n, num_kv_heads, head_dim]
|
||||
if n > 1:
|
||||
assert bsz % n == 0, "Each sequence should have the same number of tokens to be copied"
|
||||
bsz = bsz // n
|
||||
|
||||
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
|
||||
f"Got incompatible batch size (number of seqs):\n"
|
||||
f" Past kv sequence lengths bsz {kv_lengths.shape[0]}; "
|
||||
f" block tables bsz {block_tables.shape[0]}, input k batch size {bsz}"
|
||||
)
|
||||
|
||||
# Modify if the shape of kv cahce is changed.
|
||||
block_size = k_cache.size(-2)
|
||||
|
||||
num_warps = 8 if head_dim > 128 else 4
|
||||
|
||||
grid = (bsz * n, num_kv_heads)
|
||||
_copy_to_kcache_seqlen_n_kernel[grid](
|
||||
k,
|
||||
k_cache,
|
||||
block_tables,
|
||||
kv_lengths,
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
k_cache.stride(0),
|
||||
k_cache.stride(1),
|
||||
k_cache.stride(2),
|
||||
k_cache.stride(3),
|
||||
block_tables.stride(0),
|
||||
block_tables.stride(1),
|
||||
block_size,
|
||||
n=n,
|
||||
HEAD_DIM=head_dim,
|
||||
num_warps=num_warps,
|
||||
)
|
||||
|
||||
|
||||
def copy_kv_to_blocked_cache(
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
|
Reference in New Issue
Block a user