[pipeline]: add p2p fallback order and fix interleaved pp deadlock (#5214)

* fix: add fallback order option and update 1f1b

* fix: fix deadlock comm in interleaved pp

* test: modify p2p test
This commit is contained in:
Wenhao Chen
2024-01-03 11:34:49 +08:00
committed by GitHub
parent 3c0d82b19b
commit d799a3088f
5 changed files with 269 additions and 136 deletions

View File

@@ -41,10 +41,10 @@ class InterleavedSchedule(PipelineSchedule):
# P2PMeta cache
self.enable_metadata_cache = enable_metadata_cache
self.send_metadata_forward = True
self.send_metadata_backward = True
self.metadata_recv_forward = None
self.metadata_recv_backward = None
self.send_tensor_metadata = True
self.send_grad_metadata = True
self.tensor_metadata_recv = None
self.grad_metadata_recv = None
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None:
"""Load a batch from data iterator.
@@ -77,10 +77,10 @@ class InterleavedSchedule(PipelineSchedule):
# NOTE: disable metadata cache when batch size changes (not valid anymore)
if self.batch_size != self.last_batch_size:
self.enable_metadata_cache = False
self.send_metadata_forward = True
self.send_metadata_backward = True
self.metadata_recv_forward = None
self.metadata_recv_backward = None
self.send_tensor_metadata = True
self.send_grad_metadata = True
self.tensor_metadata_recv = None
self.grad_metadata_recv = None
self.last_batch_size = self.batch_size
@@ -108,7 +108,8 @@ class InterleavedSchedule(PipelineSchedule):
Returns:
int: The model chunk idx of the input microbatch_id
"""
microbatch_id_in_group = (microbatch_id) % (self.stage_manager.num_stages * self.num_model_chunks)
assert microbatch_id < self.num_microbatch * self.num_model_chunks
microbatch_id_in_group = microbatch_id % (self.stage_manager.num_stages * self.num_model_chunks)
model_chunk_id = microbatch_id_in_group // self.stage_manager.num_stages
if not is_forward:
model_chunk_id = self.num_model_chunks - model_chunk_id - 1
@@ -127,9 +128,9 @@ class InterleavedSchedule(PipelineSchedule):
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if not self.stage_manager.is_first_stage():
input_tensor = self.comm.recv_forward(prev_rank, metadata_recv=self.metadata_recv_forward)
if self.enable_metadata_cache and self.metadata_recv_forward is None:
self.metadata_recv_forward = create_fast_send_metadata(input_tensor)
input_tensor = self.comm.recv_forward(prev_rank, metadata_recv=self.tensor_metadata_recv)
if self.enable_metadata_cache and self.tensor_metadata_recv is None:
self.tensor_metadata_recv = create_fast_send_metadata(input_tensor)
return input_tensor
@@ -146,13 +147,13 @@ class InterleavedSchedule(PipelineSchedule):
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if not self.stage_manager.is_last_stage():
output_tensor_grad = self.comm.recv_backward(next_rank, metadata_recv=self.metadata_recv_backward)
if self.enable_metadata_cache and self.metadata_recv_backward is None:
self.metadata_recv_backward = create_fast_send_metadata(output_tensor_grad)
output_tensor_grad = self.comm.recv_backward(next_rank, metadata_recv=self.grad_metadata_recv)
if self.enable_metadata_cache and self.grad_metadata_recv is None:
self.grad_metadata_recv = create_fast_send_metadata(output_tensor_grad)
return output_tensor_grad
def send_forward(self, model_chunk_id: int, output_object: Any, next_rank: int = None) -> None:
def send_forward(self, model_chunk_id: int, output_tensor: Any, next_rank: int = None) -> None:
"""Sends the input tensor to the next stage in pipeline.
For interleaved 1F1B.
@@ -163,10 +164,10 @@ class InterleavedSchedule(PipelineSchedule):
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if not self.stage_manager.is_last_stage():
self.comm.send_forward(output_object, next_rank, send_metadata=self.send_metadata_forward)
self.send_metadata_forward = not self.enable_metadata_cache
self.comm.send_forward(output_tensor, next_rank, send_metadata=self.send_tensor_metadata)
self.send_tensor_metadata = not self.enable_metadata_cache
def send_backward(self, model_chunk_id: int, input_object: Any, prev_rank: int = None) -> None:
def send_backward(self, model_chunk_id: int, input_tensor_grad: Any, prev_rank: int = None) -> None:
"""Sends the gradient tensor to the previous stage in pipeline.
For interleaved 1F1B.
@@ -177,42 +178,96 @@ class InterleavedSchedule(PipelineSchedule):
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if not self.stage_manager.is_first_stage():
self.comm.send_backward(input_object, prev_rank, send_metadata=self.send_metadata_backward)
self.send_metadata_backward = not self.enable_metadata_cache
self.comm.send_backward(input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata)
self.send_grad_metadata = not self.enable_metadata_cache
def send_forward_recv_backward(
self, model_chunk_id: int, output_object: Any, next_rank: Optional[int] = None
self,
model_chunk_id_send: int,
model_chunk_id_recv: int,
output_tensor: Any,
next_rank: Optional[int] = None,
send_prior_fallback: Optional[bool] = None,
) -> Any:
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if not self.stage_manager.is_last_stage():
output_tensor_grad = self.comm.send_forward_recv_backward(
output_object,
next_rank,
send_metadata=self.send_metadata_forward,
metadata_recv=self.metadata_recv_backward,
)
self.send_metadata_forward = not self.enable_metadata_cache
if self.enable_metadata_cache and self.metadata_recv_backward is None:
self.metadata_recv_backward = create_fast_send_metadata(output_tensor_grad)
with self.stage_manager.switch_model_chunk_id(model_chunk_id_send):
send_data = not self.stage_manager.is_last_stage()
with self.stage_manager.switch_model_chunk_id(model_chunk_id_recv):
recv_data = not self.stage_manager.is_last_stage()
return output_tensor_grad
if send_data and recv_data:
if not self.send_forward_recv_backward and self.grad_metadata_recv is not None:
send_prior_fallback = None # must not fallback
output_tensor_grad = self.comm.send_forward_recv_backward(
output_tensor,
next_rank,
send_metadata=self.send_tensor_metadata,
metadata_recv=self.grad_metadata_recv,
send_prior_fallback=send_prior_fallback,
)
self.send_tensor_metadata = not self.enable_metadata_cache
if self.enable_metadata_cache and self.grad_metadata_recv is None:
self.grad_metadata_recv = create_fast_send_metadata(output_tensor_grad)
return output_tensor_grad
# send only or recv only
self.send_forward(model_chunk_id_send, output_tensor)
return self.recv_backward(model_chunk_id_recv)
def send_backward_recv_forward(
self, model_chunk_id: int, output_object: Any, prev_rank: Optional[int] = None
self,
model_chunk_id_send: int,
model_chunk_id_recv: int,
input_tensor_grad: Any,
prev_rank: Optional[int] = None,
send_prior_fallback: Optional[bool] = None,
) -> Any:
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if not self.stage_manager.is_first_stage():
input_tensor = self.comm.send_backward_recv_forward(
output_object,
prev_rank,
send_metadata=self.send_metadata_backward,
metadata_recv=self.metadata_recv_forward,
)
self.send_metadata_backward = not self.enable_metadata_cache
if self.enable_metadata_cache and self.metadata_recv_forward is None:
self.metadata_recv_forward = create_fast_send_metadata(input_tensor)
with self.stage_manager.switch_model_chunk_id(model_chunk_id_send):
send_data = not self.stage_manager.is_first_stage()
with self.stage_manager.switch_model_chunk_id(model_chunk_id_recv):
recv_data = not self.stage_manager.is_first_stage()
return input_tensor
if send_data and recv_data:
if not self.send_backward_recv_backward and self.tensor_metadata_recv is not None:
send_prior_fallback = None # must not fallback
input_tensor = self.comm.send_backward_recv_forward(
input_tensor_grad,
prev_rank,
send_metadata=self.send_grad_metadata,
metadata_recv=self.tensor_metadata_recv,
send_prior_fallback=send_prior_fallback,
)
self.send_grad_metadata = not self.enable_metadata_cache
if self.enable_metadata_cache and self.tensor_metadata_recv is None:
self.tensor_metadata_recv = create_fast_send_metadata(input_tensor)
return input_tensor
# send only or recv only
self.send_backward(model_chunk_id_send, input_tensor_grad)
return self.recv_forward(model_chunk_id_recv)
def send_forward_recv_forward(
self, model_chunk_id_send: int, model_chunk_id_recv: int, output_tensor: Any, send_prior: bool
):
if send_prior:
self.send_forward(model_chunk_id_send, output_tensor)
input_tensor = self.recv_forward(model_chunk_id_recv)
else:
input_tensor = self.recv_forward(model_chunk_id_recv)
self.send_forward(model_chunk_id_send, output_tensor)
return input_tensor
def send_backward_recv_backward(
self, model_chunk_id_send: int, model_chunk_id_recv: int, input_tensor_grad: Any, send_prior: bool
):
if send_prior:
self.send_backward(model_chunk_id_send, input_tensor_grad)
output_tensor_grad = self.recv_backward(model_chunk_id_recv)
else:
output_tensor_grad = self.recv_backward(model_chunk_id_recv)
self.send_backward(model_chunk_id_send, input_tensor_grad)
return output_tensor_grad
def forward_step(
self,
@@ -321,12 +376,23 @@ class InterleavedSchedule(PipelineSchedule):
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
accum_loss = torch.scalar_tensor(0, device=get_current_device())
# Run warmup forward passes.
model_chunk_id = self.get_model_chunk_id(0, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
for i in range(self.num_microbatch * self.num_model_chunks):
last_iteration = i == self.num_microbatch * self.num_model_chunks - 1
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
self.send_forward(model_chunk_id, output_obj)
if not last_iteration:
input_obj = self.send_forward_recv_forward(
model_chunk_id_send=model_chunk_id,
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=True),
output_tensor=output_obj,
send_prior=self.stage_manager.stage % 2 == 0,
)
else:
self.send_forward(model_chunk_id, output_obj)
if outputs is not None:
outputs = merge_batch(outputs)
@@ -364,54 +430,102 @@ class InterleavedSchedule(PipelineSchedule):
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
accum_loss = torch.scalar_tensor(0, device=get_current_device())
model_chunk_id = self.get_model_chunk_id(0, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
# Run warmup forward passes.
for i in range(num_warmup_microbatch):
last_iteration = i == num_warmup_microbatch - 1
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
input_objs[model_chunk_id].append(input_obj)
output_objs[model_chunk_id].append(output_obj)
self.send_forward(model_chunk_id, output_obj)
if last_iteration and num_microbatch_remaining == 0:
self.send_forward(model_chunk_id, output_obj)
else:
input_obj = self.send_forward_recv_forward(
model_chunk_id_send=model_chunk_id,
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=True),
output_tensor=output_obj,
send_prior=self.stage_manager.stage % 2 == 0,
)
if num_microbatch_remaining > 0:
model_chunk_id = self.get_model_chunk_id(num_warmup_microbatch, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
model_chunk_id = self.get_model_chunk_id(0, is_forward=False)
output_obj_grad = self.recv_backward(model_chunk_id)
# Run 1F1B in steady state.
for i in range(num_microbatch_remaining):
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True)
last_iteration = i == num_microbatch_remaining - 1
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True)
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
self.send_forward(model_chunk_id, output_obj)
# Add input_obj and output_obj to end of list.
input_objs[model_chunk_id].append(input_obj)
output_objs[model_chunk_id].append(output_obj)
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
# Pop output_obj and output_obj from the start of the list for the backward pass.
_input_obj = input_objs[model_chunk_id].pop(0)
_output_obj = output_objs[model_chunk_id].pop(0)
input_obj_grad = self.backward_step(optimizer, _input_obj, _output_obj, output_obj_grad)
# NOTE: perform 2x communication for forward and backward
def send_forward_recv_backward():
if last_iteration and num_microbatch == num_microbatch_remaining:
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True)
self.send_forward(model_chunk_id, output_obj)
else:
output_obj_grad = self.send_forward_recv_backward(
model_chunk_id_send=self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True),
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=False),
output_tensor=output_obj,
send_prior_fallback=self.stage_manager.stage % 2 == 0,
)
return output_obj_grad
def send_backward_recv_forward():
if last_iteration:
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
self.send_backward(model_chunk_id, input_obj_grad)
else:
input_obj = self.send_backward_recv_forward(
model_chunk_id_send=self.get_model_chunk_id(i, is_forward=False),
model_chunk_id_recv=self.get_model_chunk_id(i + num_warmup_microbatch + 1, is_forward=True),
input_tensor_grad=input_obj_grad,
send_prior_fallback=self.stage_manager.stage % 2 == 0 and i > 0,
)
return input_obj
if self.stage_manager.stage % 2 == 0:
output_obj_grad = send_forward_recv_backward()
input_obj = send_backward_recv_forward()
else:
input_obj = send_backward_recv_forward()
output_obj_grad = send_forward_recv_backward()
if num_microbatch_remaining == 0:
model_chunk_id = self.get_model_chunk_id(0, is_forward=False)
output_obj_grad = self.recv_backward(model_chunk_id)
# Pop output_obj and output_obj from the start of the list for
# the backward pass.
input_obj = input_objs[model_chunk_id].pop(0)
output_obj = output_objs[model_chunk_id].pop(0)
# backward
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
self.send_backward(model_chunk_id, input_obj_grad)
if not last_iteration:
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch + 1, is_forward=True)
input_obj = self.recv_forward(model_chunk_id)
# Run cooldown backward passes.
for i in range(num_microbatch_remaining, num_microbatch):
last_iteration = i == num_microbatch - 1
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
input_obj = input_objs[model_chunk_id].pop(0)
output_obj = output_objs[model_chunk_id].pop(0)
output_obj_grad = self.recv_backward(model_chunk_id)
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
self.send_backward(model_chunk_id, input_obj_grad)
_input_obj = input_objs[model_chunk_id].pop(0)
_output_obj = output_objs[model_chunk_id].pop(0)
# output_obj_grad = self.recv_backward(model_chunk_id)
input_obj_grad = self.backward_step(optimizer, _input_obj, _output_obj, output_obj_grad)
if not last_iteration:
output_obj_grad = self.send_backward_recv_backward(
model_chunk_id_send=self.get_model_chunk_id(i, is_forward=False),
model_chunk_id_recv=self.get_model_chunk_id(i + 1, is_forward=False),
input_tensor_grad=input_obj_grad,
send_prior=self.stage_manager.stage % 2 == 0 and i > num_microbatch_remaining,
)
else:
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
self.send_backward(model_chunk_id, input_obj_grad)
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)