mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
[zero] fix init bugs in zero context (#686)
* adapt model weight initialization for methods in Pytorch nn.init
This commit is contained in:
@@ -51,36 +51,36 @@ def run_moe_zero_init(init_device_type, shard_strategy_class):
|
||||
with ZeroInitContext(target_device=init_device,
|
||||
shard_strategy=shard_strategy_class(),
|
||||
shard_param=True,
|
||||
model_numel_tensor=model_numel_tensor,
|
||||
rm_torch_payload_on_the_fly=False):
|
||||
model_numel_tensor=model_numel_tensor):
|
||||
model = MoeModel()
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
assert hasattr(param, 'colo_attr')
|
||||
for name, param in model.named_parameters():
|
||||
assert hasattr(param, 'colo_attr')
|
||||
|
||||
# the weights in the gate should be fp32
|
||||
if 'gate' in name:
|
||||
assert param.colo_attr.sharded_data_tensor.dtype == torch.float32
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.dtype == torch.half
|
||||
# the weights in the gate should be fp32
|
||||
if 'gate' in name:
|
||||
assert param.colo_attr.sharded_data_tensor.dtype == torch.float32
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.dtype == torch.half
|
||||
|
||||
# the parameters in moe experts and its gate should not be sharded
|
||||
if ('experts' in name) or ('gate' in name) or ('residual_combine' in name):
|
||||
assert not param.colo_attr.sharded_data_tensor.is_sharded
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.is_sharded
|
||||
# the parameters in moe experts and its gate should not be sharded
|
||||
if ('experts' in name) or ('gate' in name) or ('residual_combine' in name):
|
||||
assert not param.colo_attr.sharded_data_tensor.is_sharded
|
||||
assert param.colo_attr.sharded_data_tensor.data_ptr() == param.data.data_ptr()
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.is_sharded
|
||||
|
||||
# the parameters in moe experts is not replicated
|
||||
if 'experts' in name:
|
||||
assert not param.is_replicated
|
||||
else:
|
||||
assert param.is_replicated
|
||||
# the parameters in moe experts is not replicated
|
||||
if 'experts' in name:
|
||||
assert not param.is_replicated
|
||||
else:
|
||||
assert param.is_replicated
|
||||
|
||||
if param.colo_attr.param_is_sharded:
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
|
||||
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == 'cuda'
|
||||
if param.colo_attr.param_is_sharded:
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
|
||||
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == 'cuda'
|
||||
|
||||
|
||||
def _run_dist(rank, world_size, port):
|
||||
@@ -91,7 +91,6 @@ def _run_dist(rank, world_size, port):
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2, 4])
|
||||
@pytest.mark.skip("Under development")
|
||||
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
||||
def test_moe_zero_init(world_size):
|
||||
run_func = partial(_run_dist, world_size=world_size, port=free_port())
|
||||
|
@@ -28,12 +28,9 @@ def run_model_test(enable_autocast, shard_strategy_class):
|
||||
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
|
||||
_, train_dataloader, _, _, criterion = get_components_func()
|
||||
|
||||
rm_torch_payload_on_the_fly = False
|
||||
|
||||
with ZeroInitContext(target_device=torch.cuda.current_device(),
|
||||
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
|
||||
shard_param=True):
|
||||
zero_model = MoeModel()
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)
|
||||
|
||||
|
@@ -60,8 +60,7 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, g
|
||||
with ZeroInitContext(
|
||||
target_device=torch.device('cpu') if cpu_offload else torch.device(f'cuda:{get_current_device()}'),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=False):
|
||||
shard_param=True):
|
||||
zero_model = MoeModel()
|
||||
|
||||
zero_model = ShardedModelV2(
|
||||
|
@@ -28,7 +28,6 @@ def run_model_test(init_device_type, shard_strategy_class):
|
||||
|
||||
for get_components_func in non_distributed_component_funcs:
|
||||
model_builder, _, _, _, _ = get_components_func()
|
||||
model_numel_tensor = torch.zeros(1, dtype=torch.int)
|
||||
if init_device_type == 'cuda':
|
||||
init_device = torch.device(f"cuda:{get_current_device()}")
|
||||
elif init_device_type == 'cpu':
|
||||
@@ -40,8 +39,7 @@ def run_model_test(init_device_type, shard_strategy_class):
|
||||
with ZeroInitContext(target_device=init_device,
|
||||
shard_strategy=shard_strategy_class(),
|
||||
shard_param=True,
|
||||
model_numel_tensor=model_numel_tensor,
|
||||
rm_torch_payload_on_the_fly=False):
|
||||
model_numel_tensor=model_numel_tensor):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
for param in model.parameters():
|
||||
|
@@ -29,12 +29,9 @@ def run_model_test(enable_autocast, shard_strategy_class):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||
|
||||
rm_torch_payload_on_the_fly = False
|
||||
|
||||
with ZeroInitContext(target_device=torch.cuda.current_device(),
|
||||
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
|
||||
shard_param=True):
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)
|
||||
|
||||
|
@@ -60,8 +60,7 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, g
|
||||
with ZeroInitContext(
|
||||
target_device=torch.device(f'cpu:0') if cpu_offload else torch.device(f'cuda:{get_current_device()}'),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=False):
|
||||
shard_param=True):
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
zero_model = ShardedModelV2(
|
||||
zero_model,
|
||||
|
@@ -27,10 +27,9 @@ def run_zero_state_dict(shard_strategy_class):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
||||
|
||||
with ZeroInitContext(target_device=torch.cuda.current_device(),
|
||||
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=False):
|
||||
shard_param=True):
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy)
|
||||
|
||||
|
Reference in New Issue
Block a user