[zero] fix init bugs in zero context (#686)

* adapt model weight initialization for methods in Pytorch nn.init
This commit is contained in:
HELSON 2022-04-07 17:38:45 +08:00 committed by GitHub
parent 0ed7042f42
commit d7ecaf362b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 117 additions and 86 deletions

View File

@ -3,6 +3,8 @@ import functools
from typing import Optional from typing import Optional
import torch import torch
import torch.nn as nn
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc from colossalai.core import global_context as gpc
from colossalai.context.singleton_meta import SingletonMeta from colossalai.context.singleton_meta import SingletonMeta
@ -10,7 +12,6 @@ from colossalai.logging import get_dist_logger
from colossalai.zero.shard_utils import BaseShardStrategy from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16 from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_param import ShardedParamV2 from colossalai.zero.sharded_param import ShardedParamV2
from torch.distributed import ProcessGroup
from contextlib import AbstractContextManager from contextlib import AbstractContextManager
@ -93,24 +94,21 @@ class ZeroContextConfig(object):
replicated (bool, optional): Whether the param is replicated across data parallel group. replicated (bool, optional): Whether the param is replicated across data parallel group.
Some parameters are not replicated, e.g. parameters in MOE experts. Some parameters are not replicated, e.g. parameters in MOE experts.
shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False. shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False.
rm_torch_payload_on_the_fly (bool, optional): If set to `True`, remove tensor payload on `param.data` after module init finished.
This will reduce memory usage when initializing model.
But it's not suitable for all models, especially when there are `weight init` operations in `__init__`.
If set to `False`, remove tensor payload on param.data afther the context exist.
This is used when you add some logic to operate tensors in __init__ of module.
See torchvision resnet18. Defaults to False.
""" """
def __init__(self, def __init__(self, target_device: torch.device, replicated: bool = True, shard_param: bool = False):
target_device: torch.device,
replicated: bool = True,
shard_param: bool = False,
rm_torch_payload_on_the_fly: bool = False):
super().__init__() super().__init__()
if shard_param:
assert replicated, "Non-replicated parameters can't be sharded."
# replicated no-shard parameters should locate in cuda, since we will broadcast them soon
if replicated and not shard_param:
assert target_device.type == 'cuda', "Replicated no-shard paramters should locate in cuda."
self.target_device = target_device self.target_device = target_device
self.is_replicated: bool = replicated self.is_replicated: bool = replicated
self.shard_param: bool = shard_param self.shard_param: bool = shard_param
self.rm_torch_payload_on_the_fly: bool = rm_torch_payload_on_the_fly
class ZeroInitContext(InsertPostInitMethodToModuleSubClasses): class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
@ -123,35 +121,27 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
Args: Args:
target_device (torch.device): The device where param data are after exiting the context. target_device (torch.device): The device where param data are after exiting the context.
shard_strategy (BaseShardStrategy): Shard strategy instance. shard_strategy (BaseShardStrategy): Shard strategy instance.
seed (int, optional): Random seed for weight initialization
shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False. shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False.
rm_torch_payload_on_the_fly (bool, optional): If set to `True`, remove tensor payload on `param.data` after module init finished.
This will reduce memory usage when initializing model.
But it's not suitable for all models, especially when there are `weight init` operations in `__init__`.
If set to `False`, remove tensor payload on param.data afther the context exist.
This is used when you add some logic to operate tensors in __init__ of module.
See torchvision resnet18. Defaults to False.
model_numel_tensor (torch.Tensor, optional): A tensor which will store the number of elements of model. Defaults to torch.zeros(1, dtype=torch.int). model_numel_tensor (torch.Tensor, optional): A tensor which will store the number of elements of model. Defaults to torch.zeros(1, dtype=torch.int).
dp_process_group (Optional[ProcessGroup], optional): Data parallel process group. Defaults to None.
""" """
def __init__(self, def __init__(self,
target_device: torch.device, target_device: torch.device,
shard_strategy: BaseShardStrategy, shard_strategy: BaseShardStrategy,
seed: int = 2**10 - 1,
shard_param: bool = False, shard_param: bool = False,
rm_torch_payload_on_the_fly: bool = False, model_numel_tensor: torch.Tensor = torch.zeros(1, dtype=torch.long)):
model_numel_tensor: torch.Tensor = torch.zeros(1, dtype=torch.long),
dp_process_group: Optional[ProcessGroup] = None):
super().__init__() super().__init__()
self.shard_strategy = shard_strategy self.shard_strategy = shard_strategy
self.initialized_param_list = [] self.sharded_param_list = []
self.unshard_param_list = []
self.model_numel_tensor = model_numel_tensor self.model_numel_tensor = model_numel_tensor
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA) self.seed = seed
self.dp_process_group = gpc.get_group(ParallelMode.DATA)
self.config = ZeroContextConfig(target_device=target_device, self.config = ZeroContextConfig(target_device=target_device, replicated=True, shard_param=shard_param)
replicated=True,
shard_param=shard_param,
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly)
ZeroContextMgr().current_context = self ZeroContextMgr().current_context = self
@ -167,9 +157,35 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
def shard_param(self): def shard_param(self):
return self.config.shard_param return self.config.shard_param
@property @staticmethod
def rm_torch_payload_on_the_fly(self): def calc_fanin_fanout(tensor: torch.Tensor):
return self.config.rm_torch_payload_on_the_fly """We use this function to substitute fan-in and fan-out calculation in torch.nn.init.
This can help us get correct fan-in and fan-out for sharded tensor.
"""
assert isinstance(tensor, nn.Parameter), "Sharded tensor initilization is only allowed for paramters"
# get correct shape of input tensor
if not hasattr(tensor, 'colo_attr') or not tensor.colo_attr.param_is_sharded:
tensor_shape = tensor.shape
else:
tensor_shape = tensor.colo_attr.sharded_data_tensor.origin_shape
dimensions = len(tensor_shape)
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
num_input_fmaps = tensor_shape[1]
num_output_fmaps = tensor_shape[0]
receptive_field_size = 1
if dimensions > 2:
# math.prod is not always available, accumulate the product manually
# we could use functools.reduce but that is not supported by TorchScript
for s in tensor_shape[2:]:
receptive_field_size *= s
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def _pre_context_exec(self): def _pre_context_exec(self):
""" """
@ -177,15 +193,40 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
""" """
self.logger = get_dist_logger("ZeroInitContext") self.logger = get_dist_logger("ZeroInitContext")
# substitute fan-in and fan-out calculation
self.nn_fanin_fanout = nn.init._calculate_fan_in_and_fan_out
nn.init._calculate_fan_in_and_fan_out = self.calc_fanin_fanout
# reserve rng states
self.cpu_rng_state = torch.get_rng_state()
self.cuda_rng_state = torch.cuda.get_rng_state()
# set new seed for initialization, since we initialize sharded tensor separately
# we don't want all processes have the same seed
# otherwise all sharded tensors are same after init
offset = self.seed + 1 # we want to have more 1 in binary format seed
torch.manual_seed(self.seed + offset * dist.get_rank())
def _post_context_exec(self): def _post_context_exec(self):
"""The callback function when exiting context. """The callback function when exiting context.
""" """
if not self.rm_torch_payload_on_the_fly: for param in self.sharded_param_list:
for param in self.initialized_param_list: assert hasattr(param, 'colo_attr')
assert hasattr(param, 'colo_attr') param.colo_attr.remove_torch_payload()
param.colo_attr.remove_torch_payload()
del self.initialized_param_list del self.sharded_param_list
src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[0]
for param in self.unshard_param_list:
assert hasattr(param, 'colo_attr')
if param.is_replicated:
dist.broadcast(tensor=param.data, src=src_rank, group=self.dp_process_group)
del self.unshard_param_list
nn.init._calculate_fan_in_and_fan_out = self.nn_fanin_fanout
torch.set_rng_state(self.cpu_rng_state)
torch.cuda.set_rng_state(self.cuda_rng_state)
def _post_init_method(self, module: torch.nn.Module): def _post_init_method(self, module: torch.nn.Module):
""" """
@ -219,11 +260,14 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
if param.grad is not None: if param.grad is not None:
param.grad = param.grad.to(target_device) param.grad = param.grad.to(target_device)
param.colo_attr = ShardedParamV2(param, rm_torch_payload=self.rm_torch_payload_on_the_fly) param.colo_attr = ShardedParamV2(param, rm_torch_payload=False)
if self.shard_param: if self.shard_param:
self.shard_strategy.shard([param.colo_attr.sharded_data_tensor], self.dp_process_group) self.shard_strategy.shard([param.colo_attr.sharded_data_tensor], self.dp_process_group)
self.initialized_param_list.append(param) param.data = param.colo_attr.sharded_data_tensor.payload
self.sharded_param_list.append(param)
else:
self.unshard_param_list.append(param)
# We must cast buffers # We must cast buffers
# If we use BN, buffers may be on CPU and Float # If we use BN, buffers may be on CPU and Float
@ -250,8 +294,7 @@ class ZeroContextMgr(metaclass=SingletonMeta):
def no_shard_zero_context(is_replicated: bool = True) -> AbstractContextManager: def no_shard_zero_context(is_replicated: bool = True) -> AbstractContextManager:
return ZeroContextMgr().hijack_context_config(target_device=torch.device('cuda', torch.cuda.current_device()), return ZeroContextMgr().hijack_context_config(target_device=torch.device('cuda', torch.cuda.current_device()),
replicated=is_replicated, replicated=is_replicated,
shard_param=False, shard_param=False)
rm_torch_payload_on_the_fly=False)
def no_shard_zero_decrator(is_replicated: bool = True): def no_shard_zero_decrator(is_replicated: bool = True):

View File

@ -51,36 +51,36 @@ def run_moe_zero_init(init_device_type, shard_strategy_class):
with ZeroInitContext(target_device=init_device, with ZeroInitContext(target_device=init_device,
shard_strategy=shard_strategy_class(), shard_strategy=shard_strategy_class(),
shard_param=True, shard_param=True,
model_numel_tensor=model_numel_tensor, model_numel_tensor=model_numel_tensor):
rm_torch_payload_on_the_fly=False):
model = MoeModel() model = MoeModel()
for name, param in model.named_parameters(): for name, param in model.named_parameters():
assert hasattr(param, 'colo_attr') assert hasattr(param, 'colo_attr')
# the weights in the gate should be fp32 # the weights in the gate should be fp32
if 'gate' in name: if 'gate' in name:
assert param.colo_attr.sharded_data_tensor.dtype == torch.float32 assert param.colo_attr.sharded_data_tensor.dtype == torch.float32
else: else:
assert param.colo_attr.sharded_data_tensor.dtype == torch.half assert param.colo_attr.sharded_data_tensor.dtype == torch.half
# the parameters in moe experts and its gate should not be sharded # the parameters in moe experts and its gate should not be sharded
if ('experts' in name) or ('gate' in name) or ('residual_combine' in name): if ('experts' in name) or ('gate' in name) or ('residual_combine' in name):
assert not param.colo_attr.sharded_data_tensor.is_sharded assert not param.colo_attr.sharded_data_tensor.is_sharded
else: assert param.colo_attr.sharded_data_tensor.data_ptr() == param.data.data_ptr()
assert param.colo_attr.sharded_data_tensor.is_sharded else:
assert param.colo_attr.sharded_data_tensor.is_sharded
# the parameters in moe experts is not replicated # the parameters in moe experts is not replicated
if 'experts' in name: if 'experts' in name:
assert not param.is_replicated assert not param.is_replicated
else: else:
assert param.is_replicated assert param.is_replicated
if param.colo_attr.param_is_sharded: if param.colo_attr.param_is_sharded:
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \ assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}' f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'
else: else:
assert param.colo_attr.sharded_data_tensor.payload.device.type == 'cuda' assert param.colo_attr.sharded_data_tensor.payload.device.type == 'cuda'
def _run_dist(rank, world_size, port): def _run_dist(rank, world_size, port):
@ -91,7 +91,6 @@ def _run_dist(rank, world_size, port):
@pytest.mark.dist @pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4]) @pytest.mark.parametrize("world_size", [2, 4])
@pytest.mark.skip("Under development")
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_zero_init(world_size): def test_moe_zero_init(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port()) run_func = partial(_run_dist, world_size=world_size, port=free_port())

View File

@ -28,12 +28,9 @@ def run_model_test(enable_autocast, shard_strategy_class):
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module') get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
_, train_dataloader, _, _, criterion = get_components_func() _, train_dataloader, _, _, criterion = get_components_func()
rm_torch_payload_on_the_fly = False with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
with ZeroInitContext(target_device=torch.cuda.current_device(),
shard_strategy=shard_strategy, shard_strategy=shard_strategy,
shard_param=True, shard_param=True):
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
zero_model = MoeModel() zero_model = MoeModel()
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True) zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)

View File

@ -60,8 +60,7 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, g
with ZeroInitContext( with ZeroInitContext(
target_device=torch.device('cpu') if cpu_offload else torch.device(f'cuda:{get_current_device()}'), target_device=torch.device('cpu') if cpu_offload else torch.device(f'cuda:{get_current_device()}'),
shard_strategy=shard_strategy, shard_strategy=shard_strategy,
shard_param=True, shard_param=True):
rm_torch_payload_on_the_fly=False):
zero_model = MoeModel() zero_model = MoeModel()
zero_model = ShardedModelV2( zero_model = ShardedModelV2(

View File

@ -28,7 +28,6 @@ def run_model_test(init_device_type, shard_strategy_class):
for get_components_func in non_distributed_component_funcs: for get_components_func in non_distributed_component_funcs:
model_builder, _, _, _, _ = get_components_func() model_builder, _, _, _, _ = get_components_func()
model_numel_tensor = torch.zeros(1, dtype=torch.int)
if init_device_type == 'cuda': if init_device_type == 'cuda':
init_device = torch.device(f"cuda:{get_current_device()}") init_device = torch.device(f"cuda:{get_current_device()}")
elif init_device_type == 'cpu': elif init_device_type == 'cpu':
@ -40,8 +39,7 @@ def run_model_test(init_device_type, shard_strategy_class):
with ZeroInitContext(target_device=init_device, with ZeroInitContext(target_device=init_device,
shard_strategy=shard_strategy_class(), shard_strategy=shard_strategy_class(),
shard_param=True, shard_param=True,
model_numel_tensor=model_numel_tensor, model_numel_tensor=model_numel_tensor):
rm_torch_payload_on_the_fly=False):
model = model_builder(checkpoint=True) model = model_builder(checkpoint=True)
for param in model.parameters(): for param in model.parameters():

View File

@ -29,12 +29,9 @@ def run_model_test(enable_autocast, shard_strategy_class):
get_components_func = non_distributed_component_funcs.get_callable(model_name) get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, _, criterion = get_components_func() model_builder, train_dataloader, _, _, criterion = get_components_func()
rm_torch_payload_on_the_fly = False with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
with ZeroInitContext(target_device=torch.cuda.current_device(),
shard_strategy=shard_strategy, shard_strategy=shard_strategy,
shard_param=True, shard_param=True):
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
zero_model = model_builder(checkpoint=True) zero_model = model_builder(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True) zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)

View File

@ -60,8 +60,7 @@ def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, g
with ZeroInitContext( with ZeroInitContext(
target_device=torch.device(f'cpu:0') if cpu_offload else torch.device(f'cuda:{get_current_device()}'), target_device=torch.device(f'cpu:0') if cpu_offload else torch.device(f'cuda:{get_current_device()}'),
shard_strategy=shard_strategy, shard_strategy=shard_strategy,
shard_param=True, shard_param=True):
rm_torch_payload_on_the_fly=False):
zero_model = model_builder(checkpoint=True) zero_model = model_builder(checkpoint=True)
zero_model = ShardedModelV2( zero_model = ShardedModelV2(
zero_model, zero_model,

View File

@ -27,10 +27,9 @@ def run_zero_state_dict(shard_strategy_class):
get_components_func = non_distributed_component_funcs.get_callable(model_name) get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer, criterion = get_components_func() model_builder, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
with ZeroInitContext(target_device=torch.cuda.current_device(), with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
shard_strategy=shard_strategy, shard_strategy=shard_strategy,
shard_param=True, shard_param=True):
rm_torch_payload_on_the_fly=False):
zero_model = model_builder(checkpoint=True) zero_model = model_builder(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy) zero_model = ShardedModelV2(zero_model, shard_strategy)