mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[pipeline] OPT model pipeline (#4258)
* opt forward and test * pause * finish opt model pipeline * finish opt pipeline * opt forward and test * pause * finish opt model pipeline * finish opt pipeline * fix opt * set transformers version * refactor the test pipeline
This commit is contained in:
@@ -8,61 +8,11 @@ import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bert import BertForPreTrainingPolicy, bert_for_pretraining_forward
|
||||
from colossalai.shardformer.policies.bert import BertForPreTrainingPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_for_pretraining_forward():
|
||||
configuration = BertConfig()
|
||||
model = BertForPreTraining(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
layers_per_stage = Policy.distribute_layers(len(model.bert.encoder.layer), 2)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_for_pretraining_forward(
|
||||
self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_for_pretraining_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
assert output[0].shape == (2, 3, 30522)
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_for_pretraining_policy():
|
||||
configuration = BertConfig()
|
||||
model = BertForPreTraining(configuration)
|
||||
@@ -92,12 +42,10 @@ def check_bert_for_pretraining_policy():
|
||||
model_config = ShardConfig(pipeline_stage_manager=stage_manager, enable_tensor_parallelism=False)
|
||||
model_policy.set_shard_config(model_config)
|
||||
layers = model_policy.get_held_layers()
|
||||
assert layers is not None
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_for_pretraining_forward()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 6 + 1
|
||||
else:
|
||||
assert len(layers) == 6 + 2
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
@@ -105,12 +53,6 @@ def run_dist_policy(rank, world_size, port):
|
||||
check_bert_for_pretraining_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_for_pretraining_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_for_pretraining_policy():
|
||||
@@ -119,5 +61,4 @@ def test_bert_for_pretraining_policy():
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert for pretraining model forward and bert for pretraining model policy"""
|
||||
test_bert_for_pretraining_forward()
|
||||
test_bert_for_pretraining_policy()
|
||||
|
@@ -8,62 +8,11 @@ import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bert import BertLMHeadModelPolicy, bert_lm_head_model_forward
|
||||
from colossalai.shardformer.policies.bert import BertLMHeadModelPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_lm_head_model_forward():
|
||||
configuration = BertConfig()
|
||||
model = BertLMHeadModel(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
layers_per_stage = Policy.distribute_layers(len(model.bert.encoder.layer), 2)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
|
||||
output = bert_lm_head_model_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
print(output['hidden_states'].shape)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_lm_head_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 30522)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_lmhead_policy():
|
||||
configuration = BertConfig()
|
||||
model = BertLMHeadModel(configuration)
|
||||
@@ -93,12 +42,10 @@ def check_bert_lmhead_policy():
|
||||
model_policy.set_shard_config(model_config)
|
||||
layers = model_policy.get_held_layers()
|
||||
|
||||
assert layers is not None
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_lm_head_model_forward()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 6 + 1
|
||||
else:
|
||||
assert len(layers) == 6 + 2
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
@@ -106,12 +53,6 @@ def run_dist_policy(rank, world_size, port):
|
||||
check_bert_lmhead_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_lm_head_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_lmhead_policy():
|
||||
@@ -119,6 +60,5 @@ def test_bert_lmhead_policy():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert for pretraining model forward and bert for pretraining model policy"""
|
||||
test_bert_lm_head_model_forward()
|
||||
"""test the bert for lm head model policy"""
|
||||
test_bert_lmhead_policy()
|
||||
|
@@ -1,5 +1,8 @@
|
||||
'''
|
||||
In the test policy we only test policy: held layers and others, as the tests for forward logic are done in test_shardformer/test_model
|
||||
'''
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.bert.modeling_bert import BertModel
|
||||
|
||||
@@ -7,60 +10,11 @@ import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bert import BertModelPolicy, bert_model_forward
|
||||
from colossalai.shardformer.policies.bert import BertModelPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_model_forward():
|
||||
# this test may crash for internet reasons
|
||||
model = BertModel.from_pretrained('bert-base-uncased')
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
layers_per_stage = Policy.distribute_layers(len(model.encoder.layer), 2)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_model_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
assert output['hidden_states'].shape == (2, 3, 768)
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bert_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 768)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_model_policy():
|
||||
model = BertModel.from_pretrained('bert-base-uncased')
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
@@ -90,12 +44,10 @@ def check_bert_model_policy():
|
||||
|
||||
layers = model_policy.get_held_layers()
|
||||
|
||||
assert layers is not None
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_model_forward()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 6 + 1
|
||||
else:
|
||||
assert len(layers) == 6 + 1
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
@@ -103,12 +55,6 @@ def run_dist_policy(rank, world_size, port):
|
||||
check_bert_model_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_model_policy():
|
||||
@@ -116,6 +62,5 @@ def test_bert_model_policy():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert model forward and bert model policy"""
|
||||
#test_bert_model_forward()
|
||||
"""test the bert model policy"""
|
||||
test_bert_model_policy()
|
||||
|
@@ -5,61 +5,13 @@ from transformers.models.bloom import BloomConfig, BloomModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.policy.bloom import BloomModelPolicy, bloom_model_forward
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.policies.bloom import BloomModelPolicy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bloom_model_forward():
|
||||
# create a BloomModel
|
||||
configuration = BloomConfig()
|
||||
model = BloomModel(configuration)
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
# print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 64)).to(torch.float32)
|
||||
if stage_manager.is_first_stage():
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bloom_model_forward(self=model,
|
||||
input_ids=x,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 64)
|
||||
print('start the training')
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3))
|
||||
output = bloom_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 64)
|
||||
print('end the training')
|
||||
print(output)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bloom_model_policy():
|
||||
# create a BloomModel
|
||||
configuration = BloomConfig()
|
||||
@@ -84,16 +36,15 @@ def check_bloom_model_policy():
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
||||
model_policy = BloomModelPolicy(stage_manager=stage_manager, num_layers=len(model.h), num_stages=2)
|
||||
assert model_policy.layers_per_stage == [1, 1]
|
||||
layers = model_policy.get_hold_layers(model)
|
||||
for layer in layers:
|
||||
print(layer)
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bloom_model_forward()
|
||||
model_policy = BloomModelPolicy()
|
||||
model_policy.set_model(model)
|
||||
model_config = ShardConfig(pipeline_stage_manager=stage_manager, enable_tensor_parallelism=False)
|
||||
model_policy.set_shard_config(model_config)
|
||||
layers = model_policy.get_held_layers()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 1 + 2
|
||||
else:
|
||||
assert len(layers) == 1 + 1
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
@@ -101,15 +52,6 @@ def run_dist_policy(rank, world_size, port):
|
||||
check_bloom_model_policy()
|
||||
|
||||
|
||||
#TODO: Bloom model should be fixed after bert model
|
||||
@pytest.mark.skip(reason="Bloom model should be fixed after bert model")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bloom_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Bloom model should be fixed after bert model")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bloom_model_policy():
|
||||
@@ -117,7 +59,5 @@ def test_bloom_model_policy():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bloom model forward and bloom model policy"""
|
||||
# test_bloom_model_forward()
|
||||
# test_bloom_model_policy()
|
||||
#TODO: Bloom model should be fixed after bert model is all ready
|
||||
"""test the bloom model policy"""
|
||||
test_bloom_model_policy()
|
||||
|
Reference in New Issue
Block a user