mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[shardformer] supported T5 and its variants (#4045)
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import OrderedDict
|
||||
from typing import Any, List, OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
@@ -52,3 +52,52 @@ def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool
|
||||
assert torch.equal(v, d2[k])
|
||||
else:
|
||||
assert v == d2[k]
|
||||
|
||||
|
||||
def assert_hf_output_close(out1: Any,
|
||||
out2: Any,
|
||||
ignore_keys: List[str] = None,
|
||||
track_name: str = "",
|
||||
atol=1e-5,
|
||||
rtol=1e-5):
|
||||
"""
|
||||
Check if two outputs from huggingface are equal.
|
||||
|
||||
Args:
|
||||
out1 (Any): the first output
|
||||
out2 (Any): the second output
|
||||
ignore_keys (List[str]): the keys to ignore when comparing two dicts
|
||||
track_name (str): the name of the value compared, used to track the path
|
||||
"""
|
||||
if isinstance(out1, dict) and isinstance(out2, dict):
|
||||
# if two values are dict
|
||||
# we recursively check the keys
|
||||
assert set(out1.keys()) == set(out2.keys())
|
||||
for k in out1.keys():
|
||||
if ignore_keys is not None and k in ignore_keys:
|
||||
continue
|
||||
assert_hf_output_close(out1[k],
|
||||
out2[k],
|
||||
track_name=f"{track_name}.{k}",
|
||||
ignore_keys=ignore_keys,
|
||||
atol=atol,
|
||||
rtol=rtol)
|
||||
elif isinstance(out1, (list, tuple)) and isinstance(out2, (list, tuple)):
|
||||
# if two values are list
|
||||
# we recursively check the elements
|
||||
assert len(out1) == len(out2)
|
||||
for i in range(len(out1)):
|
||||
assert_hf_output_close(out1[i],
|
||||
out2[i],
|
||||
track_name=f"{track_name}.{i}",
|
||||
ignore_keys=ignore_keys,
|
||||
atol=atol,
|
||||
rtol=rtol)
|
||||
elif isinstance(out1, Tensor) and isinstance(out2, Tensor):
|
||||
if out1.shape != out2.shape:
|
||||
raise AssertionError(f"{track_name}: shape mismatch: {out1.shape} vs {out2.shape}")
|
||||
assert torch.allclose(
|
||||
out1, out2, atol=atol, rtol=rtol
|
||||
), f"{track_name}: tensor value mismatch\nvalue 1: {out1}\nvalue 2: {out2}, mean error: {torch.abs(out1 - out2).mean()}"
|
||||
else:
|
||||
assert out1 == out2, f"{track_name}: value mismatch.\nout1: {out1}\nout2: {out2}"
|
||||
|
Reference in New Issue
Block a user