[shardformer] Support the T5ForTokenClassification model (#5816)

* t5 token, still pytest fail

* Resolve T5 Pytest Failure

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Guangyao Zhang
2024-06-27 16:40:38 +08:00
committed by GitHub
parent 5dfbcd7746
commit d9d5e7ea1f
5 changed files with 166 additions and 11 deletions

View File

@@ -8,8 +8,15 @@ from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
TokenClassifierOutput,
)
from transformers.models.t5.modeling_t5 import (
T5EncoderModel,
T5ForConditionalGeneration,
T5ForTokenClassification,
T5Model,
T5Stack,
)
from transformers.models.t5.modeling_t5 import T5EncoderModel, T5ForConditionalGeneration, T5Model, T5Stack
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
@@ -582,6 +589,71 @@ class T5PipelineForwards:
return outputs
@staticmethod
def t5_for_token_classification_forward(
self: T5ForTokenClassification,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
position_bias: Optional[torch.Tensor] = None,
encoder_decoder_position_bias: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
backward_tensor_keys: Optional[List[str]] = None,
stage_index: Optional[List[int]] = None,
decoder_starting_stage: Optional[int] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
This function is modified on the basis of transformers.models.t5.modeling_t5.T5ForTokenClassification.forward.
Please refer to original code of transformers for more details.
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = T5PipelineForwards.t5_stack_forward(
self.transformer.encoder,
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
position_bias=position_bias,
encoder_decoder_position_bias=encoder_decoder_position_bias,
stage_index=stage_index,
decoder_starting_stage=decoder_starting_stage,
)
if stage_manager.is_last_stage():
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return outputs
def get_t5_flash_attention_forward():
from transformers.models.t5.modeling_t5 import T5Attention

View File

@@ -68,6 +68,9 @@ _POLICY_LIST = {
file_name="t5", class_name="T5ForConditionalGenerationPolicy"
),
"transformers.models.t5.modeling_t5.T5EncoderModel": PolicyLocation(file_name="t5", class_name="T5EncoderPolicy"),
"transformers.models.t5.modeling_t5.T5ForTokenClassification": PolicyLocation(
file_name="t5", class_name="T5ForTokenClassificationPolicy"
),
# GPT2
"transformers.models.gpt2.modeling_gpt2.GPT2Model": PolicyLocation(file_name="gpt2", class_name="GPT2ModelPolicy"),
"transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel": PolicyLocation(

View File

@@ -31,7 +31,13 @@ from ..modeling.t5 import (
)
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["distribute_t5_layers", "T5ModelPolicy", "T5ForConditionalGenerationPolicy", "T5EncoderPolicy"]
__all__ = [
"distribute_t5_layers",
"T5ModelPolicy",
"T5ForConditionalGenerationPolicy",
"T5EncoderPolicy",
"T5ForTokenClassificationPolicy",
]
class T5BasePolicy(Policy):
@@ -312,9 +318,13 @@ class T5BasePolicy(Policy):
assert self.pipeline_stage_manager is not None
stage_manager = self.pipeline_stage_manager
model = self.model
encoder = self.model.encoder
decoder = getattr(self.model, "decoder", None)
if self.model.__class__.__name__ == "T5ForTokenClassification":
model = self.model.transformer
else:
model = self.model
encoder = model.encoder
decoder = getattr(model, "decoder", None)
num_encoder_layers = len(encoder.block)
num_decoder_layers = len(decoder.block) if decoder else 0
@@ -353,7 +363,11 @@ class T5BasePolicy(Policy):
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
stage_manager = self.pipeline_stage_manager
encoder = self.model.encoder
if self.model.__class__.__name__ == "T5ForTokenClassification":
encoder = self.model.transformer.encoder
else:
encoder = self.model.encoder
decoder = getattr(self.model, "decoder", None)
num_encoder_layers = len(encoder.block)
@@ -542,3 +556,46 @@ class T5EncoderPolicy(T5BasePolicy):
def get_shared_params(self) -> List[Dict[int, Tensor]]:
return []
class T5ForTokenClassificationPolicy(T5EncoderPolicy):
def module_policy(self):
from transformers.models.t5.modeling_t5 import T5ForTokenClassification
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
T5ForTokenClassification: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
)
]
)
}
policy.update(addon_module)
if self.pipeline_stage_manager:
self.set_pipeline_forward(
model_cls=T5ForTokenClassification,
new_forward=T5PipelineForwards.t5_for_token_classification_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[nn.Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(self.model.dropout)
held_layers.append(self.model.classifier)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
# no shared params for sequence classification model
return []