mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[shardformer] Support the T5ForTokenClassification model (#5816)
* t5 token, still pytest fail * Resolve T5 Pytest Failure * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -8,8 +8,15 @@ from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
Seq2SeqLMOutput,
|
||||
Seq2SeqModelOutput,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.models.t5.modeling_t5 import (
|
||||
T5EncoderModel,
|
||||
T5ForConditionalGeneration,
|
||||
T5ForTokenClassification,
|
||||
T5Model,
|
||||
T5Stack,
|
||||
)
|
||||
from transformers.models.t5.modeling_t5 import T5EncoderModel, T5ForConditionalGeneration, T5Model, T5Stack
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
@@ -582,6 +589,71 @@ class T5PipelineForwards:
|
||||
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def t5_for_token_classification_forward(
|
||||
self: T5ForTokenClassification,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
position_bias: Optional[torch.Tensor] = None,
|
||||
encoder_decoder_position_bias: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
backward_tensor_keys: Optional[List[str]] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
decoder_starting_stage: Optional[int] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
||||
r"""
|
||||
This function is modified on the basis of transformers.models.t5.modeling_t5.T5ForTokenClassification.forward.
|
||||
Please refer to original code of transformers for more details.
|
||||
```"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = T5PipelineForwards.t5_stack_forward(
|
||||
self.transformer.encoder,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
head_mask=head_mask,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
position_bias=position_bias,
|
||||
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
||||
stage_index=stage_index,
|
||||
decoder_starting_stage=decoder_starting_stage,
|
||||
)
|
||||
if stage_manager.is_last_stage():
|
||||
sequence_output = outputs[0]
|
||||
|
||||
sequence_output = self.dropout(sequence_output)
|
||||
logits = self.classifier(sequence_output)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return TokenClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def get_t5_flash_attention_forward():
|
||||
from transformers.models.t5.modeling_t5 import T5Attention
|
||||
|
Reference in New Issue
Block a user