mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 10:30:03 +00:00
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
@@ -5,8 +5,7 @@ from colossalai.context import ParallelMode
|
||||
from colossalai.registry import HOOKS
|
||||
from colossalai.utils import is_no_pp_or_last_stage
|
||||
from ._base_hook import BaseHook
|
||||
from .._trainer import Trainer
|
||||
from ..metric import Loss, Accuracy2D, Accuracy, Accuracy2p5D, Accuracy3D
|
||||
from ..metric import Loss, Accuracy1D, Accuracy2D, Accuracy, Accuracy2p5D, Accuracy3D
|
||||
|
||||
|
||||
class MetricHook(BaseHook):
|
||||
@@ -22,16 +21,14 @@ class MetricHook(BaseHook):
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
trainer: Trainer,
|
||||
priority: int,
|
||||
):
|
||||
super().__init__(trainer, priority)
|
||||
super().__init__(priority)
|
||||
self._is_stage_to_compute = is_no_pp_or_last_stage()
|
||||
self._check_metric_states_initialization()
|
||||
|
||||
def _check_metric_states_initialization(self):
|
||||
if 'metrics' not in self.trainer.states:
|
||||
self.init_runner_states('metrics', dict(train={}, test={}))
|
||||
def _check_metric_states_initialization(self, trainer):
|
||||
if 'metrics' not in trainer.states:
|
||||
self.init_runner_states(trainer, 'metrics', dict(train={}, test={}))
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
@@ -44,36 +41,71 @@ class LossHook(MetricHook):
|
||||
:type priority: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int = 0):
|
||||
super().__init__(trainer, priority)
|
||||
def __init__(self, priority: int = 0):
|
||||
super().__init__(priority)
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
self._check_metric_states_initialization(trainer)
|
||||
|
||||
if self._is_stage_to_compute:
|
||||
self.train_loss = Loss(epoch_only=False)
|
||||
self.test_loss = Loss(epoch_only=True)
|
||||
|
||||
# register the metric calculator
|
||||
self.trainer.states['metrics']['train'][
|
||||
trainer.states['metrics']['train'][
|
||||
self.train_loss.__class__.__name__] = self.train_loss
|
||||
self.trainer.states['metrics']['test'][
|
||||
trainer.states['metrics']['test'][
|
||||
self.test_loss.__class__.__name__] = self.test_loss
|
||||
|
||||
def before_train_epoch(self):
|
||||
def before_train_epoch(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.train_loss.reset()
|
||||
|
||||
def after_train_iter(self, logits, label, loss):
|
||||
def after_train_iter(self, trainer, logits, label, loss):
|
||||
if self._is_stage_to_compute:
|
||||
self.train_loss.update(loss)
|
||||
|
||||
def before_test_epoch(self):
|
||||
def before_test_epoch(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.test_loss.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, loss):
|
||||
def after_test_iter(self, trainer, logits, label, loss):
|
||||
if self._is_stage_to_compute:
|
||||
self.test_loss.update(loss)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class Accuracy1DHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy1D`.
|
||||
It acts the same as :class:`AccuracyHook`.
|
||||
|
||||
:param trainer: Trainer attached with current hook
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type trainer: Trainer
|
||||
:type priority: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, priority: int = 10):
|
||||
super().__init__(priority)
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
self._check_metric_states_initialization(trainer)
|
||||
if self._is_stage_to_compute:
|
||||
self.metric = Accuracy1D(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, trainer, logits, label, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class Accuracy2DHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy2D`.
|
||||
@@ -85,42 +117,46 @@ class Accuracy2DHook(MetricHook):
|
||||
:type priority: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int = 0):
|
||||
super().__init__(trainer, priority)
|
||||
def __init__(self, priority: int = 0):
|
||||
super().__init__(priority)
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
self._check_metric_states_initialization(trainer)
|
||||
if self._is_stage_to_compute:
|
||||
self.metric = Accuracy2D(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
def before_test(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
def after_test_iter(self, trainer, logits, label, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class Accuracy2p5DHook(MetricHook):
|
||||
def __init__(self, trainer: Trainer, priority: int = 0):
|
||||
super().__init__(trainer, priority)
|
||||
def __init__(self, priority: int = 0):
|
||||
super().__init__(priority)
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
self._check_metric_states_initialization(trainer)
|
||||
if self._is_stage_to_compute:
|
||||
self.metric = Accuracy2p5D(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
def before_test(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
def after_test_iter(self, trainer, logits, label, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
@@ -136,26 +172,22 @@ class Accuracy3DHook(MetricHook):
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
trainer: Trainer,
|
||||
input_parallel_mode: ParallelMode,
|
||||
weight_parallel_mode: ParallelMode,
|
||||
priority: int = 10):
|
||||
super().__init__(trainer, priority)
|
||||
super().__init__(priority)
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric = Accuracy3D(epoch_only=True,
|
||||
input_parallel_mode=input_parallel_mode,
|
||||
weight_parallel_mode=weight_parallel_mode)
|
||||
self.metric = Accuracy3D(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
def before_test(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
def after_test_iter(self, trainer, logits, label, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
@@ -170,20 +202,21 @@ class AccuracyHook(MetricHook):
|
||||
:type priority: int
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int = 0):
|
||||
super().__init__(trainer, priority)
|
||||
def __init__(self, priority: int = 0):
|
||||
super().__init__(priority)
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric = Accuracy(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
def before_test(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
def after_test_iter(self, trainer, logits, label, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(logits, label)
|
||||
|
Reference in New Issue
Block a user