mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
@@ -1,22 +1,26 @@
|
||||
from .activation_checkpoint import checkpoint
|
||||
from .common import print_rank_0, sync_model_param_in_dp, is_dp_rank_0, is_tp_rank_0, is_no_pp_or_last_stage
|
||||
from .common import (print_rank_0, sync_model_param_in_dp, is_dp_rank_0,
|
||||
is_tp_rank_0, is_no_pp_or_last_stage, is_using_ddp,
|
||||
is_using_pp, conditional_context, is_model_parallel_parameter,
|
||||
clip_grad_norm_fp32, count_zeros_fp32, copy_tensor_parallel_attributes,
|
||||
param_is_not_tensor_parallel_duplicate)
|
||||
from .cuda import get_current_device, synchronize, empty_cache, set_to_cuda
|
||||
from .memory import report_memory_usage
|
||||
from .timer import MultiTimer, Timer
|
||||
from .multi_tensor_apply import multi_tensor_applier
|
||||
from .gradient_accumulation import accumulate_gradient
|
||||
from .data_sampler import DataParallelSampler, get_dataloader
|
||||
|
||||
_GLOBAL_MULTI_TIMER = MultiTimer(on=False)
|
||||
|
||||
|
||||
def get_global_multitimer():
|
||||
return _GLOBAL_MULTI_TIMER
|
||||
|
||||
|
||||
def set_global_multitimer_status(mode: bool):
|
||||
_GLOBAL_MULTI_TIMER.set_status(mode)
|
||||
|
||||
|
||||
__all__ = ['checkpoint', 'print_rank_0', 'sync_model_param_in_dp', 'get_current_device',
|
||||
'synchronize', 'empty_cache', 'set_to_cuda', 'report_memory_usage', 'Timer', 'MultiTimer',
|
||||
'get_global_multitimer', 'set_global_multitimer_status',
|
||||
'is_dp_rank_0', 'is_tp_rank_0', 'is_no_pp_or_last_stage'
|
||||
__all__ = ['checkpoint',
|
||||
'print_rank_0', 'sync_model_param_in_dp', 'is_dp_rank_0',
|
||||
'is_tp_rank_0', 'is_no_pp_or_last_stage', 'is_using_ddp',
|
||||
'is_using_pp', 'conditional_context', 'is_model_parallel_parameter',
|
||||
'clip_grad_norm_fp32', 'count_zeros_fp32', 'copy_tensor_parallel_attributes',
|
||||
'param_is_not_tensor_parallel_duplicate',
|
||||
'get_current_device', 'synchronize', 'empty_cache', 'set_to_cuda',
|
||||
'report_memory_usage',
|
||||
'Timer', 'MultiTimer',
|
||||
'multi_tensor_applier',
|
||||
'accumulate_gradient',
|
||||
'DataParallelSampler', 'get_dataloader'
|
||||
]
|
||||
|
Reference in New Issue
Block a user