Develop/experiments (#59)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000

* Integrate 1d tensor parallel in Colossal-AI (#39)

* fixed 1D and 2D convergence (#38)

* optimized 2D operations

* fixed 1D ViT convergence problem

* Feature/ddp (#49)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* support torch ddp

* fix loss accumulation

* add log for ddp

* change seed

* modify timing hook

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* Feature/pipeline (#40)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* optimize communication of pipeline parallel

* fix grad clip for pipeline

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)

* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset

* update api for better usability (#58)

update api for better usability

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
Frank Lee
2021-12-09 15:08:29 +08:00
committed by GitHub
parent eb2f8b1f6b
commit da01c234e1
229 changed files with 6532 additions and 8741 deletions

View File

@@ -1,22 +1,26 @@
from .activation_checkpoint import checkpoint
from .common import print_rank_0, sync_model_param_in_dp, is_dp_rank_0, is_tp_rank_0, is_no_pp_or_last_stage
from .common import (print_rank_0, sync_model_param_in_dp, is_dp_rank_0,
is_tp_rank_0, is_no_pp_or_last_stage, is_using_ddp,
is_using_pp, conditional_context, is_model_parallel_parameter,
clip_grad_norm_fp32, count_zeros_fp32, copy_tensor_parallel_attributes,
param_is_not_tensor_parallel_duplicate)
from .cuda import get_current_device, synchronize, empty_cache, set_to_cuda
from .memory import report_memory_usage
from .timer import MultiTimer, Timer
from .multi_tensor_apply import multi_tensor_applier
from .gradient_accumulation import accumulate_gradient
from .data_sampler import DataParallelSampler, get_dataloader
_GLOBAL_MULTI_TIMER = MultiTimer(on=False)
def get_global_multitimer():
return _GLOBAL_MULTI_TIMER
def set_global_multitimer_status(mode: bool):
_GLOBAL_MULTI_TIMER.set_status(mode)
__all__ = ['checkpoint', 'print_rank_0', 'sync_model_param_in_dp', 'get_current_device',
'synchronize', 'empty_cache', 'set_to_cuda', 'report_memory_usage', 'Timer', 'MultiTimer',
'get_global_multitimer', 'set_global_multitimer_status',
'is_dp_rank_0', 'is_tp_rank_0', 'is_no_pp_or_last_stage'
__all__ = ['checkpoint',
'print_rank_0', 'sync_model_param_in_dp', 'is_dp_rank_0',
'is_tp_rank_0', 'is_no_pp_or_last_stage', 'is_using_ddp',
'is_using_pp', 'conditional_context', 'is_model_parallel_parameter',
'clip_grad_norm_fp32', 'count_zeros_fp32', 'copy_tensor_parallel_attributes',
'param_is_not_tensor_parallel_duplicate',
'get_current_device', 'synchronize', 'empty_cache', 'set_to_cuda',
'report_memory_usage',
'Timer', 'MultiTimer',
'multi_tensor_applier',
'accumulate_gradient',
'DataParallelSampler', 'get_dataloader'
]