Develop/experiments (#59)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000

* Integrate 1d tensor parallel in Colossal-AI (#39)

* fixed 1D and 2D convergence (#38)

* optimized 2D operations

* fixed 1D ViT convergence problem

* Feature/ddp (#49)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* support torch ddp

* fix loss accumulation

* add log for ddp

* change seed

* modify timing hook

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* Feature/pipeline (#40)

* remove redundancy func in setup (#19) (#20)

* use env to control the language of doc (#24) (#25)

* Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>

* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)

* add explanation for ViT example (#35) (#36)

* optimize communication of pipeline parallel

* fix grad clip for pipeline

Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>

* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)

* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset

* update api for better usability (#58)

update api for better usability

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
Frank Lee
2021-12-09 15:08:29 +08:00
committed by GitHub
parent eb2f8b1f6b
commit da01c234e1
229 changed files with 6532 additions and 8741 deletions

View File

@@ -1,8 +1,21 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.distributed as dist
import torch
from torch._six import inf
try:
import colossal_C
except:
pass
import torch.distributed as dist
from contextlib import contextmanager
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from .multi_tensor_apply import multi_tensor_applier
from colossalai.constants import IS_TENSOR_PARALLEL, TENSOR_PARALLEL_ATTRIBUTES, NUM_PARTITIONS
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
@@ -18,7 +31,6 @@ def print_rank_0(msg: str, logger=None):
print(msg, flush=True)
else:
logger.info(msg)
# print(msg, flush=True)
def sync_model_param_in_dp(model):
@@ -26,17 +38,214 @@ def sync_model_param_in_dp(model):
:param model: A pyTorch nn.model on whose parameters you check the consistency
'''
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
for param in model.parameters():
ranks = gpc.get_ranks_in_group(ParallelMode.DATA)
dist.broadcast(param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
dist.broadcast(
param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
def is_dp_rank_0():
return not gpc.is_initialized(ParallelMode.DATA) or gpc.is_first_rank(ParallelMode.DATA)
def is_tp_rank_0():
return not gpc.is_initialized(ParallelMode.TENSOR) or gpc.is_first_rank(ParallelMode.TENSOR)
def is_no_pp_or_last_stage():
return not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE)
return not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE)
def is_using_ddp():
return gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1
def is_using_pp():
return gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1
@contextmanager
def conditional_context(context_manager, enable=True):
if enable:
with context_manager:
yield
else:
yield
def is_model_parallel_parameter(p):
return hasattr(p, IS_TENSOR_PARALLEL) and getattr(p, IS_TENSOR_PARALLEL)
def _calc_l2_norm(grads):
norm = 0.0
if len(grads) > 0:
dummy_overflow_buf = torch.cuda.IntTensor([0])
norm, _ = multi_tensor_applier(
colossal_C.multi_tensor_l2norm,
dummy_overflow_buf,
[grads],
False # no per-parameter norm
)
return norm
def _calc_lp(grads, norm_type):
norm = 0.0
for grad in grads:
grad_norm = torch.norm(grad, norm_type)
norm += grad_norm ** norm_type
return norm
# ======== Gradient Clipping =========
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
"""Clips gradient norm of an iterable of parameters whose gradients
are in fp32.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
# Filter parameters based on:
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
params = []
for param in parameters:
if param.grad is not None:
# Make sure the grads are in fp32
assert param.grad.type() == 'torch.cuda.FloatTensor', \
f'expected gradient to be dtype torch.cuda.FloatTensor, but got {param.grad.type()}'
params.append(param)
# Norm parameters.
max_norm = float(max_norm)
norm_type = float(norm_type)
# Calculate norm.
if norm_type == inf:
total_norm = max(p.grad.data.abs().max() for p in params)
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
ops = []
# Take max across all model-parallel GPUs.
if gpc.is_initialized(ParallelMode.TENSOR) and gpc.get_world_size(ParallelMode.TENSOR) > 1:
ops.append(dist.all_reduce(total_norm_cuda,
op=dist.ReduceOp.MAX,
group=gpc.get_group(
ParallelMode.TENSOR),
async_op=True))
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
ops.append(dist.all_reduce(total_norm_cuda,
op=dist.ReduceOp.MAX,
group=gpc.get_group(
ParallelMode.PIPELINE),
async_op=True))
for req in ops:
req.wait()
total_norm = total_norm_cuda[0].item()
else:
tensor_parallel_grads = []
no_tensor_parallel_grads = []
for p in params:
if is_model_parallel_parameter(p):
reductor = (gpc.get_world_size(ParallelMode.TENSOR) / getattr(p, NUM_PARTITIONS)) ** (1 / norm_type)
tensor_parallel_grads.append(p.grad.data / reductor)
else:
no_tensor_parallel_grads.append(p.grad.data)
if norm_type == 2.0:
tensor_parallel_norm = _calc_l2_norm(
tensor_parallel_grads) ** norm_type
no_tensor_parallel_norm = _calc_l2_norm(
no_tensor_parallel_grads) ** norm_type
else:
tensor_parallel_norm = _calc_lp(tensor_parallel_grads, norm_type)
no_tensor_parallel_grads = _calc_lp(
no_tensor_parallel_grads, norm_type)
# Sum across all model-parallel GPUs.
if gpc.is_initialized(ParallelMode.TENSOR) and len(tensor_parallel_grads) > 0:
dist.all_reduce(tensor_parallel_norm,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.TENSOR))
total_norm = tensor_parallel_norm + no_tensor_parallel_norm
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
dist.all_reduce(total_norm,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PIPELINE))
total_norm = total_norm ** (1.0 / norm_type)
if type(total_norm) == 'torch.cuda.FloatTensor':
total_norm = total_norm.item()
# Scale.
clip_coeff = max_norm / (total_norm + 1.0e-6)
if clip_coeff < 1.0:
grads = [p.grad.detach() for p in params]
dummy_overflow_buf = torch.cuda.IntTensor([0])
multi_tensor_applier(colossal_C.multi_tensor_scale,
dummy_overflow_buf,
[grads, grads],
clip_coeff)
return total_norm
def count_zeros_fp32(parameters):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
# Filter parameters based on:
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
total_num_zeros = 0.0
for param in parameters:
grad_not_none = param.grad is not None
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if grad_not_none and is_not_tp_duplicate:
grad = param.grad.detach()
num_zeros = grad.numel() - torch.count_nonzero(grad)
total_num_zeros = num_zeros + total_num_zeros
# Sum across all model-parallel GPUs.
ops = []
ops.append(dist.all_reduce(total_num_zeros,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.TENSOR),
async_op=True))
ops.append(dist.all_reduce(total_num_zeros,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PIPELINE),
async_op=True))
for req in ops:
req.wait()
total_num_zeros = total_num_zeros.item()
return total_num_zeros
def copy_tensor_parallel_attributes(src_tensor, dst_tensor):
for attr in TENSOR_PARALLEL_ATTRIBUTES:
if hasattr(src_tensor, attr):
val = getattr(src_tensor, attr)
setattr(dst_tensor, attr, val)
def param_is_not_tensor_parallel_duplicate(param):
return (hasattr(param, IS_TENSOR_PARALLEL) and
getattr(param, IS_TENSOR_PARALLEL)) or (
gpc.get_local_rank(ParallelMode.TENSOR) == 0)