mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 21:40:02 +00:00
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit2e0b0b7699
. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
@@ -1,8 +1,21 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
import torch
|
||||
from torch._six import inf
|
||||
|
||||
try:
|
||||
import colossal_C
|
||||
except:
|
||||
pass
|
||||
|
||||
import torch.distributed as dist
|
||||
from contextlib import contextmanager
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from .multi_tensor_apply import multi_tensor_applier
|
||||
from colossalai.constants import IS_TENSOR_PARALLEL, TENSOR_PARALLEL_ATTRIBUTES, NUM_PARTITIONS
|
||||
import torch.distributed as dist
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
@@ -18,7 +31,6 @@ def print_rank_0(msg: str, logger=None):
|
||||
print(msg, flush=True)
|
||||
else:
|
||||
logger.info(msg)
|
||||
# print(msg, flush=True)
|
||||
|
||||
|
||||
def sync_model_param_in_dp(model):
|
||||
@@ -26,17 +38,214 @@ def sync_model_param_in_dp(model):
|
||||
|
||||
:param model: A pyTorch nn.model on whose parameters you check the consistency
|
||||
'''
|
||||
|
||||
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
|
||||
for param in model.parameters():
|
||||
ranks = gpc.get_ranks_in_group(ParallelMode.DATA)
|
||||
dist.broadcast(param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
|
||||
dist.broadcast(
|
||||
param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
|
||||
|
||||
|
||||
def is_dp_rank_0():
|
||||
return not gpc.is_initialized(ParallelMode.DATA) or gpc.is_first_rank(ParallelMode.DATA)
|
||||
|
||||
|
||||
def is_tp_rank_0():
|
||||
return not gpc.is_initialized(ParallelMode.TENSOR) or gpc.is_first_rank(ParallelMode.TENSOR)
|
||||
|
||||
|
||||
def is_no_pp_or_last_stage():
|
||||
return not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE)
|
||||
return not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE)
|
||||
|
||||
|
||||
def is_using_ddp():
|
||||
return gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1
|
||||
|
||||
|
||||
def is_using_pp():
|
||||
return gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1
|
||||
|
||||
|
||||
@contextmanager
|
||||
def conditional_context(context_manager, enable=True):
|
||||
if enable:
|
||||
with context_manager:
|
||||
yield
|
||||
else:
|
||||
yield
|
||||
|
||||
|
||||
def is_model_parallel_parameter(p):
|
||||
return hasattr(p, IS_TENSOR_PARALLEL) and getattr(p, IS_TENSOR_PARALLEL)
|
||||
|
||||
|
||||
def _calc_l2_norm(grads):
|
||||
norm = 0.0
|
||||
if len(grads) > 0:
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
norm, _ = multi_tensor_applier(
|
||||
colossal_C.multi_tensor_l2norm,
|
||||
dummy_overflow_buf,
|
||||
[grads],
|
||||
False # no per-parameter norm
|
||||
)
|
||||
return norm
|
||||
|
||||
|
||||
def _calc_lp(grads, norm_type):
|
||||
norm = 0.0
|
||||
for grad in grads:
|
||||
grad_norm = torch.norm(grad, norm_type)
|
||||
norm += grad_norm ** norm_type
|
||||
return norm
|
||||
|
||||
# ======== Gradient Clipping =========
|
||||
|
||||
|
||||
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
|
||||
"""Clips gradient norm of an iterable of parameters whose gradients
|
||||
are in fp32.
|
||||
|
||||
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
|
||||
added functionality to handle model parallel parameters. Note that
|
||||
the gradients are modified in place.
|
||||
|
||||
Arguments:
|
||||
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
|
||||
single Tensor that will have gradients normalized
|
||||
max_norm (float or int): max norm of the gradients
|
||||
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
|
||||
infinity norm.
|
||||
|
||||
Returns:
|
||||
Total norm of the parameters (viewed as a single vector).
|
||||
"""
|
||||
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
|
||||
# Filter parameters based on:
|
||||
# - grad should not be none
|
||||
# - parameter should not be shared
|
||||
# - should not be a replica due to tensor model parallelism
|
||||
params = []
|
||||
for param in parameters:
|
||||
if param.grad is not None:
|
||||
# Make sure the grads are in fp32
|
||||
assert param.grad.type() == 'torch.cuda.FloatTensor', \
|
||||
f'expected gradient to be dtype torch.cuda.FloatTensor, but got {param.grad.type()}'
|
||||
params.append(param)
|
||||
# Norm parameters.
|
||||
max_norm = float(max_norm)
|
||||
norm_type = float(norm_type)
|
||||
|
||||
# Calculate norm.
|
||||
if norm_type == inf:
|
||||
total_norm = max(p.grad.data.abs().max() for p in params)
|
||||
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
|
||||
ops = []
|
||||
# Take max across all model-parallel GPUs.
|
||||
if gpc.is_initialized(ParallelMode.TENSOR) and gpc.get_world_size(ParallelMode.TENSOR) > 1:
|
||||
ops.append(dist.all_reduce(total_norm_cuda,
|
||||
op=dist.ReduceOp.MAX,
|
||||
group=gpc.get_group(
|
||||
ParallelMode.TENSOR),
|
||||
async_op=True))
|
||||
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
|
||||
ops.append(dist.all_reduce(total_norm_cuda,
|
||||
op=dist.ReduceOp.MAX,
|
||||
group=gpc.get_group(
|
||||
ParallelMode.PIPELINE),
|
||||
async_op=True))
|
||||
for req in ops:
|
||||
req.wait()
|
||||
total_norm = total_norm_cuda[0].item()
|
||||
else:
|
||||
tensor_parallel_grads = []
|
||||
no_tensor_parallel_grads = []
|
||||
for p in params:
|
||||
if is_model_parallel_parameter(p):
|
||||
reductor = (gpc.get_world_size(ParallelMode.TENSOR) / getattr(p, NUM_PARTITIONS)) ** (1 / norm_type)
|
||||
tensor_parallel_grads.append(p.grad.data / reductor)
|
||||
else:
|
||||
no_tensor_parallel_grads.append(p.grad.data)
|
||||
if norm_type == 2.0:
|
||||
tensor_parallel_norm = _calc_l2_norm(
|
||||
tensor_parallel_grads) ** norm_type
|
||||
no_tensor_parallel_norm = _calc_l2_norm(
|
||||
no_tensor_parallel_grads) ** norm_type
|
||||
else:
|
||||
tensor_parallel_norm = _calc_lp(tensor_parallel_grads, norm_type)
|
||||
no_tensor_parallel_grads = _calc_lp(
|
||||
no_tensor_parallel_grads, norm_type)
|
||||
# Sum across all model-parallel GPUs.
|
||||
if gpc.is_initialized(ParallelMode.TENSOR) and len(tensor_parallel_grads) > 0:
|
||||
dist.all_reduce(tensor_parallel_norm,
|
||||
op=dist.ReduceOp.SUM,
|
||||
group=gpc.get_group(ParallelMode.TENSOR))
|
||||
total_norm = tensor_parallel_norm + no_tensor_parallel_norm
|
||||
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
|
||||
dist.all_reduce(total_norm,
|
||||
op=dist.ReduceOp.SUM,
|
||||
group=gpc.get_group(ParallelMode.PIPELINE))
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
if type(total_norm) == 'torch.cuda.FloatTensor':
|
||||
total_norm = total_norm.item()
|
||||
|
||||
# Scale.
|
||||
clip_coeff = max_norm / (total_norm + 1.0e-6)
|
||||
if clip_coeff < 1.0:
|
||||
grads = [p.grad.detach() for p in params]
|
||||
dummy_overflow_buf = torch.cuda.IntTensor([0])
|
||||
multi_tensor_applier(colossal_C.multi_tensor_scale,
|
||||
dummy_overflow_buf,
|
||||
[grads, grads],
|
||||
clip_coeff)
|
||||
|
||||
return total_norm
|
||||
|
||||
|
||||
def count_zeros_fp32(parameters):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
|
||||
# Filter parameters based on:
|
||||
# - grad should not be none
|
||||
# - parameter should not be shared
|
||||
# - should not be a replica due to tensor model parallelism
|
||||
total_num_zeros = 0.0
|
||||
for param in parameters:
|
||||
grad_not_none = param.grad is not None
|
||||
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
|
||||
if grad_not_none and is_not_tp_duplicate:
|
||||
grad = param.grad.detach()
|
||||
num_zeros = grad.numel() - torch.count_nonzero(grad)
|
||||
total_num_zeros = num_zeros + total_num_zeros
|
||||
|
||||
# Sum across all model-parallel GPUs.
|
||||
ops = []
|
||||
ops.append(dist.all_reduce(total_num_zeros,
|
||||
op=dist.ReduceOp.SUM,
|
||||
group=gpc.get_group(ParallelMode.TENSOR),
|
||||
async_op=True))
|
||||
ops.append(dist.all_reduce(total_num_zeros,
|
||||
op=dist.ReduceOp.SUM,
|
||||
group=gpc.get_group(ParallelMode.PIPELINE),
|
||||
async_op=True))
|
||||
for req in ops:
|
||||
req.wait()
|
||||
total_num_zeros = total_num_zeros.item()
|
||||
|
||||
return total_num_zeros
|
||||
|
||||
|
||||
def copy_tensor_parallel_attributes(src_tensor, dst_tensor):
|
||||
for attr in TENSOR_PARALLEL_ATTRIBUTES:
|
||||
if hasattr(src_tensor, attr):
|
||||
val = getattr(src_tensor, attr)
|
||||
setattr(dst_tensor, attr, val)
|
||||
|
||||
|
||||
def param_is_not_tensor_parallel_duplicate(param):
|
||||
return (hasattr(param, IS_TENSOR_PARALLEL) and
|
||||
getattr(param, IS_TENSOR_PARALLEL)) or (
|
||||
gpc.get_local_rank(ParallelMode.TENSOR) == 0)
|
||||
|
Reference in New Issue
Block a user