mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 20:10:17 +00:00
[elixir] add elixir plugin and its unit test (#3865)
This commit is contained in:
@@ -1,9 +1,10 @@
|
||||
from .elixir_plugin import ElixirPlugin
|
||||
from .gemini_plugin import GeminiPlugin
|
||||
from .low_level_zero_plugin import LowLevelZeroPlugin
|
||||
from .plugin_base import Plugin
|
||||
from .torch_ddp_plugin import TorchDDPPlugin
|
||||
|
||||
__all__ = ['Plugin', 'TorchDDPPlugin', 'GeminiPlugin', 'LowLevelZeroPlugin']
|
||||
__all__ = ['Plugin', 'TorchDDPPlugin', 'GeminiPlugin', 'LowLevelZeroPlugin', 'ElixirPlugin']
|
||||
|
||||
import torch
|
||||
from packaging import version
|
||||
|
243
colossalai/booster/plugin/elixir_plugin.py
Normal file
243
colossalai/booster/plugin/elixir_plugin.py
Normal file
@@ -0,0 +1,243 @@
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Callable, Dict, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
|
||||
from colossalai.checkpoint_io.utils import load_state_dict, save_state_dict
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.elixir import ElixirModule, ElixirOptimizer
|
||||
from colossalai.elixir.cuda import set_memory_fraction
|
||||
from colossalai.elixir.search import minimum_waste_search, optimal_search
|
||||
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from .dp_plugin_base import DPPluginBase
|
||||
|
||||
__all__ = ['ElixirPlugin']
|
||||
|
||||
|
||||
class ElixirCheckpointIO(GeneralCheckpointIO):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.coordinator = DistCoordinator()
|
||||
|
||||
def load_unsharded_model(self, model: ElixirModule, checkpoint: str):
|
||||
"""
|
||||
Load available model states from checkpoint.
|
||||
"""
|
||||
if self.coordinator.is_master():
|
||||
checkpoint = load_state_dict(checkpoint)
|
||||
else:
|
||||
checkpoint = None
|
||||
model.load_state_dict(checkpoint, only_rank_0=True)
|
||||
|
||||
def save_unsharded_model(self, model: ElixirModule, checkpoint: str, use_safetensors: bool = False):
|
||||
"""
|
||||
Save model states to checkpoint but only on master process.
|
||||
"""
|
||||
state_dict = model.state_dict(only_rank_0=True)
|
||||
if self.coordinator.is_master():
|
||||
save_state_dict(state_dict, checkpoint, use_safetensors)
|
||||
|
||||
def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool):
|
||||
"""
|
||||
Save optimizer to checkpoint but only on master process.
|
||||
"""
|
||||
# TODO: optimizer state dict is sharded
|
||||
warnings.warn('ElixirPlugin does not support save full optimizer checkpoint now. Save it on every process.')
|
||||
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
|
||||
super().save_unsharded_optimizer(optimizer, checkpoint, gather_dtensor)
|
||||
|
||||
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
|
||||
warnings.warn(
|
||||
'ElixirPlugin can only load optimizer checkpoint saved by itself with the same number of processes.')
|
||||
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
|
||||
super().load_optimizer(optimizer, checkpoint)
|
||||
|
||||
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
||||
"""
|
||||
Save model to checkpoint but only on master process.
|
||||
"""
|
||||
if self.coordinator.is_master():
|
||||
super().save_lr_scheduler(lr_scheduler, checkpoint)
|
||||
|
||||
|
||||
class ELXModel(ModelWrapper):
|
||||
|
||||
def __init__(self, module: nn.Module, search_func: Callable, search_config: Dict, module_config: Dict) -> None:
|
||||
super().__init__(module)
|
||||
sr = search_func(module, **search_config)
|
||||
self.module = ElixirModule(module, sr, **module_config)
|
||||
|
||||
def unwrap(self):
|
||||
# just return the ElixirModule instance
|
||||
return self.module
|
||||
|
||||
|
||||
class ELXOptimizer(OptimizerWrapper):
|
||||
|
||||
def __init__(self, module: ElixirModule, optimizer: Optimizer, optimizer_config: dict) -> None:
|
||||
optimizer = ElixirOptimizer(module, optimizer, **optimizer_config, init_step=True)
|
||||
super().__init__(optimizer)
|
||||
|
||||
def backward(self, loss: Tensor, *args, **kwargs):
|
||||
self.optim.backward(loss)
|
||||
|
||||
def clip_grad_by_norm(self,
|
||||
max_norm: Union[float, int],
|
||||
norm_type: Union[float, int] = 2,
|
||||
error_if_nonfinite: bool = False,
|
||||
*args,
|
||||
**kwargs) -> Tensor:
|
||||
warnings.warn(f'Elixir controls grad clipping by itself, so you should set the max_norm before training.')
|
||||
|
||||
def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None:
|
||||
raise NotImplementedError('Elixir does not support clip_grad_by_value')
|
||||
|
||||
|
||||
class ElixirPlugin(DPPluginBase):
|
||||
"""
|
||||
Plugin for Elixir.
|
||||
|
||||
Example:
|
||||
>>> from colossalai.booster import Booster
|
||||
>>> from colossalai.booster.plugin import ElixirPlugin
|
||||
>>>
|
||||
>>> model, train_dataset, optimizer, criterion = ...
|
||||
>>> plugin = ElixirPlugin()
|
||||
|
||||
>>> train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8)
|
||||
>>> booster = Booster(plugin=plugin)
|
||||
>>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion)
|
||||
|
||||
Args:
|
||||
search_type (str): The used search algorithm for the chunk initialization, 'mini_waste' or 'optimal'.
|
||||
dtype (torch.dtype): The data type used in computations, torch.float or torch.float16.
|
||||
If torch.float16 is used, AMP is enabled automatically.
|
||||
prefetch (bool): Whether to prefetch chunks for overlapping.
|
||||
Users should provide example_input and example_step_fn if prefetch is True.
|
||||
cpu_offload (bool): Whether to offload optimizer states (OS).
|
||||
Only available when the search_type is 'mini_waste'.
|
||||
pin_memory (bool): Whether to store OS in the pinned cpu memory.
|
||||
Only available when cpu_offload is enabled.
|
||||
reduce_always_fp32 (bool): Whether to reduce gradients in fp32.
|
||||
outputs_always_fp32 (bool): Whether to cast outputs to fp32.
|
||||
example_input (Dict): An example input for the model.
|
||||
example_step_fn (Callable): A callable function that takes the model and the example input as input, and does a training step.
|
||||
optimizer_type (str): The type of optimizer, 'Adam' or 'SGD'.
|
||||
Only used when the search type is 'optimal'.
|
||||
optimizer_config (Dict): The config of the optimizer.
|
||||
This config is commonly used in AMP.
|
||||
See the class `ElixirOptimizer` for more details.
|
||||
cuda_memory_fraction (float): The fraction of the GPU memory used Elixir.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
search_type: str = 'mini_waste',
|
||||
dtype: torch.dtype = torch.float32,
|
||||
prefetch: bool = False,
|
||||
cpu_offload: bool = False,
|
||||
pin_memory: bool = False,
|
||||
reduce_always_fp32: bool = False,
|
||||
outputs_always_fp32: bool = False,
|
||||
example_input: Optional[Dict] = None,
|
||||
example_step_fn: Optional[Callable] = None,
|
||||
optimizer_type: str = 'Adam',
|
||||
optimizer_config: Optional[Dict] = None,
|
||||
cuda_memory_fraction: float = 1.0,
|
||||
verbose: bool = False) -> None:
|
||||
super().__init__()
|
||||
assert search_type in {'mini_waste', 'optimal'}
|
||||
assert dtype in {torch.float, torch.float16}
|
||||
self.dtype = dtype
|
||||
self.verbose = verbose
|
||||
self.world_size = dist.get_world_size()
|
||||
self.world_group = dist.group.WORLD
|
||||
set_memory_fraction(fraction=cuda_memory_fraction)
|
||||
|
||||
if search_type == 'mini_waste':
|
||||
self.search_func = minimum_waste_search
|
||||
self.search_config = dict(group_size=self.world_size,
|
||||
unified_dtype=self.dtype,
|
||||
prefetch=prefetch,
|
||||
cpu_offload=cpu_offload,
|
||||
pin_memory=pin_memory,
|
||||
inp=example_input,
|
||||
step_fn=example_step_fn,
|
||||
verbose=self.verbose)
|
||||
elif search_type == 'optimal':
|
||||
self.search = optimal_search
|
||||
self.search_config = dict(group_size=self.world_size,
|
||||
unified_dtype=self.dtype,
|
||||
optimizer_type=optimizer_type,
|
||||
overlap=prefetch,
|
||||
inp=example_input,
|
||||
step_fn=example_step_fn,
|
||||
verbose=self.verbose)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
self.module_config = dict(process_group=self.world_group,
|
||||
prefetch=prefetch,
|
||||
dtype=self.dtype,
|
||||
reduce_always_fp32=reduce_always_fp32,
|
||||
output_fp32=outputs_always_fp32)
|
||||
|
||||
if optimizer_config is None:
|
||||
optimizer_config = dict()
|
||||
self.optimizer_config = optimizer_config
|
||||
|
||||
def support_no_sync(self) -> bool:
|
||||
return False
|
||||
|
||||
def control_precision(self) -> bool:
|
||||
return True
|
||||
|
||||
def supported_precisions(self) -> List[str]:
|
||||
return ['fp16', 'fp32']
|
||||
|
||||
def control_device(self) -> bool:
|
||||
return True
|
||||
|
||||
def supported_devices(self) -> List[str]:
|
||||
return ['cuda']
|
||||
|
||||
def configure(
|
||||
self,
|
||||
model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
criterion: Callable = None,
|
||||
dataloader: DataLoader = None,
|
||||
lr_scheduler: LRScheduler = None,
|
||||
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]:
|
||||
|
||||
if not isinstance(model, ModelWrapper):
|
||||
model = ELXModel(module=model,
|
||||
search_func=self.search_func,
|
||||
search_config=self.search_config,
|
||||
module_config=self.module_config)
|
||||
|
||||
if not isinstance(optimizer, OptimizerWrapper):
|
||||
optimizer = ELXOptimizer(module=model.unwrap(), optimizer=optimizer, optimizer_config=self.optimizer_config)
|
||||
|
||||
return model, optimizer, criterion, dataloader, lr_scheduler
|
||||
|
||||
def control_checkpoint_io(self) -> bool:
|
||||
return True
|
||||
|
||||
def get_checkpoint_io(self) -> CheckpointIO:
|
||||
return ElixirCheckpointIO()
|
||||
|
||||
def no_sync(self, model: nn.Module) -> Iterator[None]:
|
||||
raise NotImplementedError
|
@@ -211,6 +211,9 @@ class Chunk:
|
||||
def reduce_check(self):
|
||||
return self.tensor_state_cnter[TensorState.READY_FOR_REDUCE] == self.num_tensors
|
||||
|
||||
def enable_l2_norm_flag(self) -> None:
|
||||
self.l2_norm_flag = True
|
||||
|
||||
def set_overflow_flag(self, valid_tensor: torch.Tensor) -> None:
|
||||
assert not self.overflow
|
||||
self.overflow = torch.isinf(valid_tensor).any().item() | torch.isnan(valid_tensor).any().item()
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
from typing import Optional, Set
|
||||
|
||||
from colossalai.elixir.chunk.core import Chunk
|
||||
|
||||
@@ -12,7 +12,7 @@ class ChunkScheduler(ABC):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.releasable_set: Optional[set] = None
|
||||
self.releasable_set: Optional[Set[Chunk]] = None
|
||||
self.current_step = -1
|
||||
|
||||
@abstractmethod
|
||||
|
@@ -12,6 +12,17 @@ from .functions import postfwd_prebwd_function, prefwd_postbwd_function
|
||||
from .storage import BufferStore
|
||||
|
||||
|
||||
def always_skip(func, args, kwargs) -> bool:
|
||||
if is_no_hook_op(func):
|
||||
return True
|
||||
if func is torch.Tensor.reshape_as:
|
||||
if isinstance(args[0], HookParam):
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class HookParam(OutplaceTensor, nn.Parameter):
|
||||
"""HookParam is a special type of tensor that is used to triggered hooks on parameters.
|
||||
HookParam adds chunk fetching before torch functions.
|
||||
@@ -43,7 +54,7 @@ class HookParam(OutplaceTensor, nn.Parameter):
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
||||
if is_no_hook_op(func):
|
||||
if always_skip(func, args, kwargs):
|
||||
with torch._C.DisableTorchFunction():
|
||||
ret = func(*args, **kwargs)
|
||||
return ret
|
||||
|
@@ -18,6 +18,11 @@ from colossalai.elixir.tensor import OutplaceTensor
|
||||
from colossalai.utils.model.experimental import LazyTensor
|
||||
|
||||
|
||||
def is_leaf_module(m: nn.Module):
|
||||
special_modules = [nn.MultiheadAttention]
|
||||
return type(m) in special_modules
|
||||
|
||||
|
||||
def get_param_optim_data(param_data: torch.Tensor, param_dtype: torch.dtype):
|
||||
param_data = param_data.to(gpu_device())
|
||||
optim_data = param_data.clone() if param_data.dtype == torch.float else param_data.float()
|
||||
@@ -71,6 +76,7 @@ class ElixirModule(nn.Module):
|
||||
assert name in self.no_grad_state_dict
|
||||
continue
|
||||
assert name in self.grad_state_dict
|
||||
# param.debug_name = name
|
||||
param.register_hook(partial(self._gradient_handler, param=param))
|
||||
param.__class__ = HookParam
|
||||
|
||||
@@ -165,8 +171,9 @@ class ElixirModule(nn.Module):
|
||||
buffer_size = 0
|
||||
for submodule in self.modules():
|
||||
sum_param_size = 0
|
||||
for param in submodule.parameters(recurse=False):
|
||||
if not param.requires_grad or self.fetcher.is_in_fused(param):
|
||||
recurse_flag = is_leaf_module(submodule)
|
||||
for param in submodule.parameters(recurse=recurse_flag):
|
||||
if not param.requires_grad:
|
||||
continue
|
||||
assert param.dtype == self.dtype
|
||||
sum_param_size += param.numel()
|
||||
|
@@ -91,6 +91,10 @@ class ElixirOptimizer(colo_optim.ColossalaiOptimizer):
|
||||
# allocate memory before training
|
||||
self.__zero_step()
|
||||
|
||||
if self.clipping_flag:
|
||||
for param_chunk in self.param_chunk_set:
|
||||
param_chunk.enable_l2_norm_flag()
|
||||
|
||||
def __zero_step(self):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
Reference in New Issue
Block a user