[elixir] add elixir plugin and its unit test (#3865)

This commit is contained in:
Haichen Huang
2023-05-31 12:10:44 +08:00
committed by GitHub
parent 206280408a
commit dbb9659099
10 changed files with 386 additions and 96 deletions

View File

@@ -19,13 +19,18 @@ def data_gen_fn():
output_transform_fn = lambda x: x
def output_bert(x):
return dict(pooler_output=x.get('pooler_output'))
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
# register the BERT variants
model_zoo.register(name='transformers_bert',
model_fn=lambda: transformers.BertModel(config),
data_gen_fn=data_gen_fn,
output_transform_fn=output_transform_fn,
output_transform_fn=output_bert,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_bert_for_pretraining',
model_fn=lambda: transformers.BertForPreTraining(config),

View File

@@ -0,0 +1,105 @@
import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import ElixirPlugin
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def run_fn(model_fn, data_gen_fn, output_transform_fn):
os_config = dict(initial_scale=64, max_norm=1.0)
plugin = ElixirPlugin(optimizer_config=os_config)
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
def check_elixir_plugin(early_stop: bool = True):
"""check elixir plugin over model zoo
Args:
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
passed_info = {}
failed_info = {}
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
# have not been tested with torchrec
if name.startswith('torchrec'):
continue
# dm_nfnet is not supported because of the skipinit_gain parameter in its NormFreeBlock
# there is `out.mul_(self.skipinit_gain)`, which should be changed to `out *= self.skipinit_gain`
if name in ['timm_dm_nfnet']:
continue
# Elixir stipulate that parameters with gradients should have gradients after the backward pass
# here are some unsupported models
# these models use layer drop
# some randomly selected layers are not used in computations
if name in ['torchaudio_wav2vec2_base', 'torchaudio_hubert_base']:
continue
# because our criterion function is too simple to generate gradients for all parameters
# following models are not supported
# users should provide complete input data to use all parameters
if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'transformers_albert',
'transformers_albert_for_pretraining', 'transformers_bert_for_pretraining',
'transformers_gpt_double_heads', 'transformers_t5', 'transformers_t5_for_conditional_generation',
'transformers_t5_encoder_model'):
continue
# currently, nn.RNN is not supported yet
if name in ('torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron'):
continue
try:
run_fn(model_fn, data_gen_fn, output_transform_fn)
passed_info[name] = 'passed'
except Exception as e:
failed_info[name] = str(e)
print(f"failed model name: {name}")
if early_stop:
raise e
torch.cuda.empty_cache()
if dist.get_rank() == 0:
print(f'Passed models({len(passed_info)}): {list(passed_info.keys())}\n\n')
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_elixir_plugin(early_stop=early_stop)
@pytest.mark.skip(reason="skip this test now")
@rerun_if_address_is_in_use()
def test_elixir_plugin(early_stop: bool = True):
spawn(run_dist, 1, early_stop=early_stop)
if __name__ == '__main__':
test_elixir_plugin(early_stop=True)

View File

@@ -1,89 +0,0 @@
import torch
import torch.distributed as dist
import colossalai
from colossalai.elixir import ElixirModule, ElixirOptimizer
from colossalai.elixir.search import minimum_waste_search
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def check_elixir_compatibility(early_stop: bool = True):
"""check gemini plugin over model zoo
Args:
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
passed_models = []
failed_info = {} # (model_name, error) pair
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
# These models lead to CUDA error
if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'timm_resmlp',
'timm_gmixer_12_224', 'timm_gmlp_b16_224', 'timm_mixer_b16_224', 'timm_convnext',
'torchaudio_wav2vec2_base', 'torchaudio_hubert_base', 'torchvision_convnext_base'):
continue
try:
print(name)
global_size = dist.get_world_size()
global_group = dist.GroupMember.WORLD
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
for k, v in data.items()
}
sr = minimum_waste_search(
# pre-commit: do not rearrange
m=model,
group_size=global_size,
unified_dtype=torch.float16,
prefetch=False,
verbose=True)
model = ElixirModule(model, sr, global_group, prefetch=False, dtype=torch.float16)
optimizer = ElixirOptimizer(model, optimizer, initial_scale=32)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
optimizer.backward(loss)
optimizer.step()
passed_models.append(name)
del model, optimizer, criterion, data, output, loss
except Exception as e:
failed_info[name] = e
if early_stop:
raise e
torch.cuda.empty_cache()
if dist.get_rank() == 0:
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_elixir_compatibility(early_stop=early_stop)
@rerun_if_address_is_in_use()
def exam_compatibility(early_stop: bool = True):
spawn(run_dist, 2, early_stop=early_stop)
if __name__ == '__main__':
exam_compatibility(early_stop=False)