mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 11:32:10 +00:00
[moe] merge moe into main (#4978)
* update moe module * support openmoe
This commit is contained in:
@@ -4,40 +4,58 @@ import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
import colossalai
|
||||
from colossalai.context.moe_context import MOE_CONTEXT
|
||||
from colossalai.legacy.engine.gradient_handler import MoeGradientHandler
|
||||
from colossalai.nn.layer.moe import Experts, MoeLayer, Top1Router, UniformNoiseGenerator
|
||||
from colossalai.moe import SparseMLP
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.moe.utils import sync_moe_model_param
|
||||
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.moe import sync_moe_model_param
|
||||
from tests.test_moe.moe_utils import MoeGradientHandler, assert_not_equal_in_group
|
||||
|
||||
BATCH_SIZE = 4
|
||||
DIM = 16
|
||||
CONFIG = dict()
|
||||
|
||||
|
||||
def run_test(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
expert_module = nn.Linear
|
||||
expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device())
|
||||
colossalai.launch(
|
||||
config=dict(),
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host="localhost",
|
||||
port=port,
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
MOE_CONTEXT.setup(42) # MOE initialization
|
||||
noisy_func = UniformNoiseGenerator()
|
||||
router = Top1Router(noisy_func=noisy_func)
|
||||
MOE_MANAGER.setup(42, parallel="EP") # MOE initialization
|
||||
num_experts_list = [1, 2, 4]
|
||||
layer_list = []
|
||||
for num_experts in num_experts_list:
|
||||
exp = Experts(expert_module, num_experts, **expert_factor)
|
||||
moe_layer = MoeLayer(DIM, num_experts, router, exp)
|
||||
moe_layer = SparseMLP(
|
||||
hidden_size=DIM,
|
||||
intermediate_size=DIM * 4,
|
||||
num_experts=num_experts,
|
||||
router_top_k=1,
|
||||
router_noisy_policy="Jitter",
|
||||
)
|
||||
layer_list.append(moe_layer)
|
||||
|
||||
model = nn.ModuleList(layer_list)
|
||||
model = model.to(get_current_device())
|
||||
dist_dict = MOE_MANAGER.parallel_info_dict
|
||||
assert_not_equal_in_group(layer_list[0].experts.wi.data, dist_dict[1].dp_group)
|
||||
assert_not_equal_in_group(layer_list[0].experts.wo.data, dist_dict[1].dp_group)
|
||||
assert_not_equal_in_group(layer_list[1].experts.wi.data, dist_dict[2].dp_group)
|
||||
assert_not_equal_in_group(layer_list[1].experts.wo.data, dist_dict[2].dp_group)
|
||||
assert_not_equal_in_group(layer_list[2].experts.wi.data, dist_dict[4].dp_group)
|
||||
assert_not_equal_in_group(layer_list[2].experts.wo.data, dist_dict[4].dp_group)
|
||||
|
||||
sync_moe_model_param(model)
|
||||
|
||||
dist_dict = MOE_CONTEXT.parallel_info_dict
|
||||
assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.wi.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.wo.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wi.data, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wo.data, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wi.data, dist_dict[4].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wo.data, dist_dict[4].dp_group)
|
||||
# MoE model synchronization passed
|
||||
|
||||
grad_handler = MoeGradientHandler(model, 0)
|
||||
@@ -47,17 +65,18 @@ def run_test(rank, world_size, port):
|
||||
data = torch.randn(BATCH_SIZE, DIM, device=get_current_device())
|
||||
grad = torch.randn_like(data)
|
||||
|
||||
MOE_CONTEXT.reset_loss()
|
||||
MOE_MANAGER.reset_loss()
|
||||
for layer in layer_list:
|
||||
data, _ = layer(data)
|
||||
data = layer(data)
|
||||
data.backward(grad)
|
||||
grad_handler.handle_gradient()
|
||||
|
||||
assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group)
|
||||
|
||||
assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.wi.grad, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.wo.grad, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wi.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wo.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wi.grad, dist_dict[4].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wo.grad, dist_dict[4].dp_group)
|
||||
# MoE grad handler test passed
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user