[moe] merge moe into main (#4978)

* update moe module
* support openmoe
This commit is contained in:
Xuanlei Zhao
2023-11-02 10:21:24 +08:00
committed by GitHub
parent 8993c8a817
commit dc003c304c
67 changed files with 7618 additions and 1657 deletions

View File

@@ -1,50 +1,138 @@
import importlib
import os
import shutil
import sys
import pytest
import torch
import torch.distributed as dist
from transformers.models.llama import LlamaConfig
import colossalai
from colossalai.context import MOE_CONTEXT
from colossalai.nn.layer.moe import load_moe_model, save_moe_model
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.moe.manager import MOE_MANAGER
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_zero.test_legacy.common import CONFIG
sys.path.append(os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
"examples/language/openmoe",
))
OpenMoeForCausalLM = importlib.import_module("model.modeling_openmoe").OpenMoeForCausalLM
set_openmoe_args = importlib.import_module("model.modeling_openmoe").set_openmoe_args
OpenMoeForCausalLMPolicy = importlib.import_module("model.openmoe_policy").OpenMoeForCausalLMPolicy
def exam_moe_checkpoint():
with ColoInitContext(device=get_current_device()):
model = MoeModel(checkpoint=True)
save_moe_model(model, "temp_path.pth")
def get_config():
config = LlamaConfig(
vocab_size=300,
hidden_size=16,
intermediate_size=32,
num_hidden_layers=4,
num_attention_heads=2,
head_dim=4,
dropout_rate=0.0,
hidden_act="swiglu",
)
set_openmoe_args(config, num_experts=16, moe_layer_interval=1)
return config
with ColoInitContext(device=get_current_device()):
other_model = MoeModel(checkpoint=True)
load_moe_model(other_model, "temp_path.pth")
state_0 = model.state_dict()
state_1 = other_model.state_dict()
for k, v in state_0.items():
u = state_1.get(k)
def get_model(parallel):
config = get_config()
model = OpenMoeForCausalLM(config)
if parallel == None:
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=1,
zero_stage=0,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "zero_ep":
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "hybrid":
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=2,
zero_stage=1,
microbatch_size=1,
custom_policy=OpenMoeForCausalLMPolicy(),
)
booster = Booster(plugin=plugin)
model, _, _, _, _ = booster.boost(model=model)
return model, booster
def _test_moe_checkpoint(parallel, shard):
if parallel == None:
MOE_MANAGER.setup(
seed=42,
parallel=None,
)
elif parallel == "zero2_ep":
MOE_MANAGER.setup(
seed=42,
parallel="EP",
)
elif parallel == "hybrid":
MOE_MANAGER.setup(
seed=42,
parallel="EP",
mode="fixed",
fixed_dp_size=1,
fixed_ep_size=2,
fixed_pp_size=2,
)
model1, booster1 = get_model(parallel)
model2, booster2 = get_model(parallel)
if shard:
booster1.save_model(model1, "./tmp_ckpt", shard=True, size_per_shard=1)
booster2.load_model(model2, "./tmp_ckpt")
else:
booster1.save_model(model1, "tmp_ckpt.pth")
booster2.load_model(model2, "tmp_ckpt.pth")
state1 = model1.state_dict()
state2 = model2.state_dict()
for k, v in state1.items():
u = state2.get(k)
assert torch.equal(u.data, v.data)
if dist.get_rank() == 0:
os.remove("temp_path.pth")
if shard:
shutil.rmtree("./tmp_ckpt")
else:
os.remove("tmp_ckpt.pth")
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_CONTEXT.setup(seed=42)
exam_moe_checkpoint()
def _run_dist(rank, world_size, port, parallel, shard):
colossalai.launch(
config=dict(),
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
_test_moe_checkpoint(parallel, shard)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("parallel", [None, "zero_ep", "hybrid"])
@pytest.mark.parametrize("shard", [True, False])
@rerun_if_address_is_in_use()
def test_moe_checkpoint(world_size):
spawn(_run_dist)
def test_moe_checkpoint(world_size, parallel, shard):
spawn(_run_dist, world_size, parallel=parallel, shard=shard)
if __name__ == "__main__":
test_moe_checkpoint(world_size=4)
test_moe_checkpoint(world_size=4, parallel="hybrid", shard=True)