[kernel] fixed repeated loading of kernels (#2549)

* [kernel] fixed repeated loading of kernels

* polish code

* polish code
This commit is contained in:
Frank Lee 2023-02-03 09:47:13 +08:00 committed by GitHub
parent 8438c35a5f
commit dd14783f75
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 59 additions and 46 deletions

View File

@ -1,3 +1,5 @@
from .layer_norm import MixedFusedLayerNorm as LayerNorm
from .multihead_attention import MultiHeadAttention
from .scaled_softmax import FusedScaleMaskSoftmax
from .scaled_softmax import FusedScaleMaskSoftmax, ScaledUpperTriangMaskedSoftmax
__all__ = ['LayerNorm', 'MultiHeadAttention', 'FusedScaleMaskSoftmax', 'ScaledUpperTriangMaskedSoftmax']

View File

@ -9,24 +9,31 @@ from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn import init
from torch.nn.parameter import Parameter
from colossalai.kernel.op_builder.layernorm import LayerNormBuilder
try:
from colossalai._C import layer_norm
except ImportError:
layer_norm = None
class FusedLayerNormAffineFunction(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, input, weight, bias, normalized_shape, eps):
try:
from colossalai._C import layer_norm
except ImportError:
from colossalai.kernel.op_builder.layernorm import LayerNormBuilder
layer_norm = LayerNormBuilder().load()
ctx.normalized_shape = normalized_shape
ctx.eps = eps
input_ = input.contiguous()
weight_ = weight.contiguous()
bias_ = bias.contiguous()
global layer_norm
if layer_norm is None:
layer_norm = LayerNormBuilder().load()
output, mean, invvar = layer_norm.forward_affine(input_, ctx.normalized_shape, weight_, bias_, ctx.eps)
ctx.layernorm_op = layer_norm
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
return output
@ -34,12 +41,6 @@ class FusedLayerNormAffineFunction(torch.autograd.Function):
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
try:
from colossalai._C import layer_norm
except ImportError:
from colossalai.kernel.op_builder.layernorm import LayerNormBuilder
layer_norm = LayerNormBuilder().load()
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
grad_input = grad_weight = grad_bias = None
grad_input, grad_weight, grad_bias \

View File

@ -1,11 +1,17 @@
"""This code from NVIDIA Megatron
with some changes. """
import enum
import torch
import torch.nn as nn
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
from colossalai.kernel.op_builder.scaled_upper_triangle_masked_softmax import ScaledUpperTrainglemaskedSoftmaxBuilder
try:
from colossalai._C import scaled_masked_softmax, scaled_upper_triang_masked_softmax
except ImportError:
scaled_masked_softmax = None
scaled_upper_triang_masked_softmax = None
class AttnMaskType(enum.Enum):
padding = 1
@ -23,7 +29,9 @@ class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(ctx, inputs, scale):
from colossalai.kernel import scaled_upper_triang_masked_softmax
global scaled_upper_triang_masked_softmax
if scaled_upper_triang_masked_softmax:
scaled_upper_triang_masked_softmax = ScaledUpperTrainglemaskedSoftmaxBuilder().load()
scale_t = torch.tensor([scale])
softmax_results = scaled_upper_triang_masked_softmax.forward(inputs, scale_t[0])
@ -33,8 +41,6 @@ class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
@staticmethod
def backward(ctx, output_grads):
from colossalai.kernel import scaled_upper_triang_masked_softmax
softmax_results, scale_t = ctx.saved_tensors
input_grads = scaled_upper_triang_masked_softmax.backward(output_grads, softmax_results, scale_t[0])
@ -52,30 +58,23 @@ class ScaledMaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(ctx, inputs, mask, scale):
try:
from colossalai._C import scaled_masked_softmax
except ImportError:
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
scale_t = torch.tensor([scale])
# build and load kernel if not pre-built
global scaled_masked_softmax
if scaled_masked_softmax is None:
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
softmax_results = scaled_masked_softmax.forward(inputs, mask, scale_t[0])
ctx.save_for_backward(softmax_results, scale_t)
return softmax_results
@staticmethod
def backward(ctx, output_grads):
try:
from colossalai._C import scaled_masked_softmax
except ImportError:
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
softmax_results, scale_t = ctx.saved_tensors
input_grads = scaled_masked_softmax.backward(output_grads, softmax_results, scale_t[0])
return input_grads, None, None
return input_grads, None, None, None
class FusedScaleMaskSoftmax(nn.Module):
@ -113,14 +112,6 @@ class FusedScaleMaskSoftmax(nn.Module):
self.mask_func = mask_func
self.softmax_in_fp32 = softmax_in_fp32
self.scale = scale
try:
from colossalai._C import scaled_masked_softmax
except ImportError:
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
self.scaled_masked_softmax = scaled_masked_softmax
assert (self.scale is None or softmax_in_fp32), "softmax should be in fp32 when scaled"
def forward(self, input, mask):
@ -186,4 +177,4 @@ class FusedScaleMaskSoftmax(nn.Module):
return probs
def get_batch_per_block(self, sq, sk, b, np):
return self.scaled_masked_softmax.get_batch_per_block(sq, sk, b, np)
return scaled_masked_softmax.get_batch_per_block(sq, sk, b, np)

View File

@ -6,6 +6,23 @@ from pathlib import Path
from typing import List
def print_rank_0(message):
"""
Print on only one process to avoid spamming.
"""
try:
import torch.distributed as dist
if not dist.is_initialized():
is_main_rank = True
else:
is_main_rank = dist.get_rank() == 0
except ImportError:
is_main_rank = True
if is_main_rank:
print(message)
class Builder(ABC):
"""
Builder is the base class to build extensions for PyTorch.
@ -117,7 +134,7 @@ class Builder(ABC):
try:
op_module = self.import_op()
if verbose:
print(f"OP {self.prebuilt_import_path} already exists, skip building.")
print_rank_0(f"OP {self.prebuilt_import_path} already exists, skip building.")
except ImportError:
# construct the build directory
import torch
@ -130,9 +147,11 @@ class Builder(ABC):
Path(build_directory).mkdir(parents=True, exist_ok=True)
if verbose:
print("=========================================================================================")
print(f"No pre-built kernel is found, build and load the {self.name} kernel during runtime now")
print("=========================================================================================")
print_rank_0(
"=========================================================================================")
print_rank_0(f"No pre-built kernel is found, build and load the {self.name} kernel during runtime now")
print_rank_0(
"=========================================================================================")
# load the kernel
op_module = load(name=self.name,
@ -146,7 +165,7 @@ class Builder(ABC):
build_duration = time.time() - start_build
if verbose:
print(f"Time to load {self.name} op: {build_duration} seconds")
print_rank_0(f"Time to load {self.name} op: {build_duration} seconds")
return op_module