[shardformer] support SAM (#4231)

* 1.support sam 2.add fused qkv for nn.Linear

* update utils support set element in list

* overtwrite SamVisionAttention foward to use DropoutForParallelInput

* remove unused code
This commit is contained in:
FoolPlayer
2023-07-14 15:56:59 +08:00
committed by Hongxin Liu
parent c59d7aca09
commit dd2bf02679
10 changed files with 733 additions and 10 deletions

View File

@@ -0,0 +1,41 @@
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
def forward_fn():
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
batch_size, height, width, _ = hidden_states.shape
# qkv with shape (3, batch_size, nHead, height * width, channel)
qkv = (self.qkv(hidden_states).reshape(batch_size, height * width, 3, self.num_attention_heads,
-1).permute(2, 0, 3, 1, 4))
# q, k, v with shape (batch_size * nHead, height * width, channel)
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(attn_weights, query, self.rel_pos_h, self.rel_pos_w,
(height, width), (height, width))
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
# replace dropout process with added DropoutForParallelInput layer
# origin code:
# attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_probs = self.dropout_layer(attn_weights)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
return forward