[upgrade]Upgrade transformers (#6320)

* fix for async io

* test for upgrading transformers

* add ci machine

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update test_fp16_torch.py

* Update build_on_pr.yml

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fiux

* fix

* fix

* fix

* upgrade llama

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* upgrade_bert

* upgrade_bloom

* [upgrade] upgrade gpt2 (#6291)

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* upgrade command

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* add explanation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* [upgrade]Upgrade qwen2 (#6302)

* upgrade qwen2

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* update_bloom

* fix

* add explantion

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* upgrade_sam

* add the explanation

* upgrade_t

* fix

* fix

* fix

* upgrade_gptj

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [upgrade]upgrade opt (#6307)

* upgrade opt

* fix

* [upgrade]Upgrade mixtral (#6317)

* upgrade mixtral

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* upgrade infer

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* upgrade drafter

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* upgrade lazy

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* upgrade mixtral

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [upgrade]Upgrade vit (#6308)

* fix

* fix

* fix rotate embedding test

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [upgrade]upgrade mistral (#6296)

* upgrade mistral

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix falcon

* fix

* Update test_shard_deepseek.py

* Update build_on_pr.yml

* Update requirements.txt

* fix (#6327)

* fix (#6328)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update bert.py

* fix (#6329)

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hanks <hangxu0304@gmail.com>
Co-authored-by: wangbluo <2538539015@qq.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
This commit is contained in:
flybird11111
2025-05-27 14:29:01 +08:00
committed by GitHub
parent 46ed5d856b
commit ddbbbaab3e
40 changed files with 839 additions and 861 deletions

View File

@@ -57,6 +57,7 @@ class Qwen2PipelineForwards:
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
@@ -131,14 +132,6 @@ class Qwen2PipelineForwards:
else:
position_ids = position_ids.view(-1, seq_length).long()
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
# embed positions, for the first stage, hidden_states is the input embeddings,
# for the other stages, hidden_states is the output of the previous stage
if shard_config.enable_flash_attention:
@@ -152,16 +145,16 @@ class Qwen2PipelineForwards:
is_causal=True,
)
else:
if self._attn_implementation == "flash_attention_2":
if self.config._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
hidden_states,
past_key_values_length,
)
else:
@@ -195,6 +188,8 @@ class Qwen2PipelineForwards:
all_self_attns = () if output_attentions else None
next_decoder_cache = None
position_embeddings = self.rotary_emb(hidden_states, position_ids)
start_idx, end_idx = stage_index[0], stage_index[1]
num_ckpt_layers = 0
if self.gradient_checkpointing and self.training:
@@ -214,7 +209,7 @@ class Qwen2PipelineForwards:
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
past_key_values[idx] if past_key_values is not None else None
if idx - start_idx < num_ckpt_layers:
layer_outputs = self._gradient_checkpointing_func(
@@ -225,15 +220,19 @@ class Qwen2PipelineForwards:
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
hidden_states = layer_outputs[0]
@@ -491,11 +490,10 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
def forward(
self: Qwen2Attention,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if sp_mode is not None:
@@ -519,9 +517,9 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
value_states = all_to_all_comm(value_states, sp_group, fp8_communication=shard_config.fp8_communication)
bsz, q_len, _ = query_states.size()
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
@@ -533,9 +531,8 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# Because the input can be padded, the absolute sequence length depends on the max position id.
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
@@ -563,7 +560,7 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
@@ -605,11 +602,11 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
attn_output, sp_group, scatter_dim=1, gather_dim=2, fp8_communication=shard_config.fp8_communication
)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
return attn_output, None
return forward
@@ -627,6 +624,7 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig, sp_mode=No
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
force_sp_output_gather: bool = True,
) -> Union[Tuple, BaseModelOutputWithPast]:
@@ -648,6 +646,9 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig, sp_mode=No
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
seq_length_with_past = seq_length
past_key_values_length = 0
@@ -664,9 +665,6 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig, sp_mode=No
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
@@ -700,6 +698,7 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig, sp_mode=No
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
position_embeddings = self.rotary_emb(hidden_states, position_ids)
if sp_mode in ["ring", "split_gather"]:
hidden_states = split_forward_gather_backward(
@@ -723,22 +722,23 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig, sp_mode=No
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)