mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-13 13:45:51 +00:00
[examples] using args and combining two versions for PaLM (#2284)
This commit is contained in:
parent
e94c79f15b
commit
df1d6dc553
@ -1,6 +0,0 @@
|
|||||||
SEQ_LENGTH = 1024
|
|
||||||
BATCH_SIZE = 4
|
|
||||||
NUM_EPOCHS = 4
|
|
||||||
TPDEGREE = 2
|
|
||||||
USE_SHARD_INIT = False
|
|
||||||
placement = 'cpu'
|
|
@ -1 +1,11 @@
|
|||||||
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 4 --master_port 29501 train.py --config palm_config.py
|
# distplan in ["colossalai", "pytorch"]
|
||||||
|
export DISTPAN="colossalai"
|
||||||
|
|
||||||
|
# The following options only valid when DISTPAN="colossalai"
|
||||||
|
export TPDEGREE=1
|
||||||
|
export GPUNUM=1
|
||||||
|
export PLACEMENT='cpu'
|
||||||
|
export USE_SHARD_INIT=False
|
||||||
|
export BATCH_SIZE=4
|
||||||
|
|
||||||
|
env OMP_NUM_THREADS=12 torchrun --standalone --nproc_per_node=${GPUNUM} --master_port 29501 train_new.py --tp_degree=${TPDEGREE} --batch_size=${BATCH_SIZE} --placement ${PLACEMENT} --shardinit ${USE_SHARD_INIT} --distplan ${DISTPAN} 2>&1 | tee run.log
|
@ -21,19 +21,51 @@ from colossalai.utils.model.colo_init_context import ColoInitContext
|
|||||||
|
|
||||||
# constants
|
# constants
|
||||||
|
|
||||||
NUM_BATCHES = int(20)
|
NUM_BATCHES = int(1000)
|
||||||
BATCH_SIZE = 4
|
|
||||||
GRADIENT_ACCUMULATE_EVERY = 1
|
GRADIENT_ACCUMULATE_EVERY = 1
|
||||||
LEARNING_RATE = 2e-4
|
LEARNING_RATE = 2e-4
|
||||||
VALIDATE_EVERY = 100
|
VALIDATE_EVERY = 100
|
||||||
GENERATE_EVERY = 500
|
GENERATE_EVERY = 500
|
||||||
GENERATE_LENGTH = 512
|
GENERATE_LENGTH = 512
|
||||||
SEQ_LEN = 1024
|
SEQ_LEN = 1024
|
||||||
TPDEGREE = 1
|
|
||||||
USE_SHARD_INIT = False
|
|
||||||
placement = 'cpu'
|
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = colossalai.get_default_parser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--distplan",
|
||||||
|
type=str,
|
||||||
|
default='colossalai',
|
||||||
|
help="The distributed plan [colossalai, pytorch].",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--tp_degree",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--placement",
|
||||||
|
type=str,
|
||||||
|
default='cpu',
|
||||||
|
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--shardinit",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help=
|
||||||
|
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch_size",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="batch size per DP group of training.",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
# helpers
|
# helpers
|
||||||
def cycle(loader):
|
def cycle(loader):
|
||||||
while True:
|
while True:
|
||||||
@ -73,22 +105,11 @@ def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy:
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
# instantiate GPT-like decoder model
|
args = parse_args()
|
||||||
|
if args.distplan not in ["colossalai", "pytorch"]:
|
||||||
parser = colossalai.get_default_parser()
|
raise TypeError(f"{args.distplan} is error")
|
||||||
args = parser.parse_args()
|
|
||||||
disable_existing_loggers()
|
disable_existing_loggers()
|
||||||
colossalai.launch_from_torch(config=args.config, seed=42)
|
colossalai.launch_from_torch(config={})
|
||||||
|
|
||||||
# instantiate GPT-like decoder model
|
|
||||||
|
|
||||||
default_pg = ProcessGroup(tp_degree=TPDEGREE)
|
|
||||||
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
|
|
||||||
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
|
||||||
|
|
||||||
with ctx:
|
|
||||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
|
||||||
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
|
||||||
|
|
||||||
with gzip.open("./data/enwik8.gz") as file:
|
with gzip.open("./data/enwik8.gz") as file:
|
||||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||||
@ -114,34 +135,62 @@ class TextSamplerDataset(Dataset):
|
|||||||
|
|
||||||
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
|
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
|
||||||
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
||||||
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
train_loader = cycle(DataLoader(train_dataset, batch_size=args.batch_size))
|
||||||
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
val_loader = cycle(DataLoader(val_dataset, batch_size=args.batch_size))
|
||||||
|
|
||||||
#tensor_parallelize(model, pg)
|
if args.distplan == "colossalai":
|
||||||
|
# instantiate GPT-like decoder model
|
||||||
|
|
||||||
pg = default_pg
|
default_pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||||
model = gemini_zero_dpp(model, pg, placement)
|
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
|
||||||
|
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||||
|
|
||||||
|
with ctx:
|
||||||
|
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||||
|
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||||
|
|
||||||
|
pg = default_pg
|
||||||
|
#tensor_parallelize(model, pg)
|
||||||
|
model = gemini_zero_dpp(model, pg, args.placement)
|
||||||
|
|
||||||
|
#optimizer
|
||||||
|
|
||||||
|
#optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
||||||
|
optimizer = GeminiAdamOptimizer(model, lr=LEARNING_RATE, initial_scale=2**5)
|
||||||
|
else:
|
||||||
|
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||||
|
model = AutoregressiveWrapper(model, max_seq_len=2048)
|
||||||
|
model.cuda()
|
||||||
|
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||||
|
|
||||||
#optimizer
|
|
||||||
|
|
||||||
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
|
||||||
|
|
||||||
# training
|
# training
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||||||
|
|
||||||
optimizer.zero_grad()
|
if args.distplan == "colossalai":
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
loss = model(next(train_loader))
|
loss = model(next(train_loader))
|
||||||
# loss.backward()
|
# loss.backward()
|
||||||
optimizer.backward(loss)
|
optimizer.backward(loss)
|
||||||
|
|
||||||
print(f"training loss: {loss.item()}")
|
print(f"training loss: {loss.item()}")
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||||
# optim.step()
|
# optim.step()
|
||||||
# optim.zero_grad()
|
# optim.zero_grad()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
else:
|
||||||
|
for __ in range(GRADIENT_ACCUMULATE_EVERY):
|
||||||
|
loss = model(next(train_loader))
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
print(f"training loss: {loss.item()}")
|
||||||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||||
|
optim.step()
|
||||||
|
optim.zero_grad()
|
||||||
|
|
||||||
# TODO
|
# TODO
|
||||||
# if i % VALIDATE_EVERY == 0:
|
# if i % VALIDATE_EVERY == 0:
|
||||||
@ -158,4 +207,4 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
|||||||
|
|
||||||
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
||||||
# output_str = decode_tokens(sample[0])
|
# output_str = decode_tokens(sample[0])
|
||||||
# print(output_str)
|
# print(output_str)
|
Loading…
Reference in New Issue
Block a user