diff --git a/.github/workflows/run_chatgpt_examples.yml b/.github/workflows/run_chatgpt_examples.yml index bb0ceb4a8..ba997f144 100644 --- a/.github/workflows/run_chatgpt_examples.yml +++ b/.github/workflows/run_chatgpt_examples.yml @@ -19,8 +19,8 @@ jobs: runs-on: [self-hosted, gpu] container: image: hpcaitech/pytorch-cuda:2.1.0-12.1.0 - options: --gpus all --rm -v /data/scratch/github_actions/chat:/data/scratch/github_actions/chat --shm-size=10.24gb - timeout-minutes: 30 + options: --gpus all --rm -v /data/scratch/examples-data:/data/scratch/examples-data --shm-size=10.24gb + timeout-minutes: 60 defaults: run: shell: bash @@ -28,26 +28,35 @@ jobs: - name: Checkout ColossalAI uses: actions/checkout@v2 + - name: Install Colossal-AI + run: | + BUILD_EXT=1 pip install -v -e . + - name: Install ChatGPT run: | - cd applications/Chat + cd applications/ColossalChat pip install -v . + export BUILD_EXT=1 pip install -r examples/requirements.txt - name: Install Transformers run: | - pip install transformers==4.30.2 + pip install transformers==4.34.1 - name: Execute Examples run: | - cd applications/Chat + cd applications/ColossalChat rm -rf ~/.cache/colossalai - ./tests/test_inference.sh - ./tests/test_benchmarks.sh + mkdir models + mkdir sft_data + mkdir prompt_data + mkdir preference_data + ./tests/test_data_preparation.sh ./tests/test_train.sh env: NCCL_SHM_DISABLE: 1 MAX_JOBS: 8 - SFT_DATASET: /data/scratch/github_actions/chat/data.json - PROMPT_DATASET: /data/scratch/github_actions/chat/prompts_en.jsonl - PRETRAIN_DATASET: /data/scratch/github_actions/chat/alpaca_data.json + PRETRAINED_MODEL_PATH: ./models + SFT_DATASET: ./sft_data + PROMPT_DATASET: ./prompt_data + PREFERENCE_DATASET: ./preference_data diff --git a/.github/workflows/run_chatgpt_unit_tests.yml b/.github/workflows/run_chatgpt_unit_tests.yml index 7986889e0..1d8a53e4f 100644 --- a/.github/workflows/run_chatgpt_unit_tests.yml +++ b/.github/workflows/run_chatgpt_unit_tests.yml @@ -21,7 +21,7 @@ jobs: runs-on: [self-hosted, gpu] container: image: hpcaitech/pytorch-cuda:2.1.0-12.1.0 - options: --gpus all --rm -v /data/scratch/chatgpt:/data/scratch/chatgpt + options: --gpus all --rm -v /data/scratch/examples-data:/data/scratch/examples-data timeout-minutes: 30 defaults: run: @@ -32,15 +32,17 @@ jobs: - name: Install ChatGPT run: | - cd applications/Chat + cd applications/ColossalChat pip install -v . - pip install -r requirements-test.txt + pip install pytest - name: Execute Unit Testing run: | - cd applications/Chat + cd applications/ColossalChat rm -rf ~/.cache/colossalai pytest tests/ + cd ./tests + ./test_templating.sh env: NCCL_SHM_DISABLE: 1 MAX_JOBS: 8 diff --git a/.gitignore b/.gitignore index 81113fa99..e539a2612 100644 --- a/.gitignore +++ b/.gitignore @@ -159,3 +159,7 @@ coverage.xml # ignore testmon and coverage files .coverage .testmondata* + +# log, test files - ColossalChat +applications/ColossalChat/logs +applications/ColossalChat/tests/logs \ No newline at end of file diff --git a/applications/Chat/benchmarks/README.md b/applications/Chat/benchmarks/README.md deleted file mode 100644 index c13f34858..000000000 --- a/applications/Chat/benchmarks/README.md +++ /dev/null @@ -1,38 +0,0 @@ -# Benchmarks - -## Benchmark OPT with LoRA on dummy prompt data - -We provide various OPT models (string in parentheses is the corresponding model name used in this script): - -- OPT-125M (125m) -- OPT-350M (350m) -- OPT-700M (700m) -- OPT-1.3B (1.3b) -- OPT-2.7B (2.7b) -- OPT-3.5B (3.5b) -- OPT-5.5B (5.5b) -- OPT-6.7B (6.7b) -- OPT-10B (10b) -- OPT-13B (13b) - -We also provide various training strategies: - -- ddp: torch DDP -- colossalai_gemini: ColossalAI GeminiDDP with `placement_policy="cuda"`, like zero3 -- colossalai_gemini_cpu: ColossalAI GeminiDDP with `placement_policy="cpu"`, like zero3-offload -- colossalai_zero2: ColossalAI zero2 -- colossalai_zero2_cpu: ColossalAI zero2-offload -- colossalai_zero1: ColossalAI zero1 -- colossalai_zero1_cpu: ColossalAI zero1-offload - -We only support `torchrun` to launch now. E.g. - -```bash -# run OPT-125M with no lora (lora_rank=0) on single-node single-GPU with min batch size -torchrun --standalone --nproc_per_node 1 benchmark_opt_lora_dummy.py \ - --model 125m --critic_model 125m --strategy ddp \ - --experience_batch_size 1 --train_batch_size 1 --lora_rank 0 -# run Actor (OPT-1.3B) and Critic (OPT-350M) with lora_rank=4 on single-node 4-GPU -torchrun --standalone --nproc_per_node 4 benchmark_opt_lora_dummy.py \ - --model 1.3b --critic_model 350m --strategy colossalai_zero2 --lora_rank 4 -``` diff --git a/applications/Chat/benchmarks/benchmark_opt_lora_dummy.py b/applications/Chat/benchmarks/benchmark_opt_lora_dummy.py deleted file mode 100644 index 0d0e2a7d3..000000000 --- a/applications/Chat/benchmarks/benchmark_opt_lora_dummy.py +++ /dev/null @@ -1,208 +0,0 @@ -import argparse -from copy import deepcopy - -import torch -import torch.distributed as dist -import torch.nn as nn -from coati.models.base import RewardModel -from coati.models.opt import OPTActor, OPTCritic -from coati.trainer import PPOTrainer -from coati.trainer.callbacks import PerformanceEvaluator -from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy, Strategy -from torch.optim import Adam -from torch.utils.data import DataLoader -from transformers import AutoTokenizer -from transformers.models.opt.configuration_opt import OPTConfig - -from colossalai.nn.optimizer import HybridAdam - - -def get_model_numel(model: nn.Module, strategy: Strategy) -> int: - numel = sum(p.numel() for p in model.parameters()) - if isinstance(strategy, GeminiStrategy) and strategy.shard_init: - numel *= dist.get_world_size() - return numel - - -def preprocess_batch(samples) -> dict: - input_ids = torch.stack(samples) - attention_mask = torch.ones_like(input_ids, dtype=torch.long) - return {"input_ids": input_ids, "attention_mask": attention_mask} - - -def print_rank_0(*args, **kwargs) -> None: - if dist.get_rank() == 0: - print(*args, **kwargs) - - -def print_model_numel(model_dict: dict) -> None: - B = 1024**3 - M = 1024**2 - K = 1024 - outputs = "" - for name, numel in model_dict.items(): - outputs += f"{name}: " - if numel >= B: - outputs += f"{numel / B:.2f} B\n" - elif numel >= M: - outputs += f"{numel / M:.2f} M\n" - elif numel >= K: - outputs += f"{numel / K:.2f} K\n" - else: - outputs += f"{numel}\n" - print_rank_0(outputs) - - -def get_gpt_config(model_name: str) -> OPTConfig: - model_map = { - "125m": OPTConfig.from_pretrained("facebook/opt-125m"), - "350m": OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16), - "700m": OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20), - "1.3b": OPTConfig.from_pretrained("facebook/opt-1.3b"), - "2.7b": OPTConfig.from_pretrained("facebook/opt-2.7b"), - "3.5b": OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32), - "5.5b": OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32), - "6.7b": OPTConfig.from_pretrained("facebook/opt-6.7b"), - "10b": OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32), - "13b": OPTConfig.from_pretrained("facebook/opt-13b"), - } - try: - return model_map[model_name] - except KeyError: - raise ValueError(f'Unknown model "{model_name}"') - - -def main(args): - if args.strategy == "ddp": - strategy = DDPStrategy() - elif args.strategy == "colossalai_gemini": - strategy = GeminiStrategy(placement_policy="static",initial_scale=2**5) - elif args.strategy == "colossalai_gemini_cpu": - strategy = GeminiStrategy(placement_policy="static", offload_optim_frac=1.0, offload_param_frac=1.0, initial_scale=2**5) - elif args.strategy == "colossalai_zero2": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda") - elif args.strategy == "colossalai_zero2_cpu": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu") - elif args.strategy == "colossalai_zero1": - strategy = LowLevelZeroStrategy(stage=1, placement_policy="cuda") - elif args.strategy == "colossalai_zero1_cpu": - strategy = LowLevelZeroStrategy(stage=1, placement_policy="cpu") - else: - raise ValueError(f'Unsupported strategy "{args.strategy}"') - - torch.cuda.set_per_process_memory_fraction(args.cuda_mem_frac) - - model_config = get_gpt_config(args.model) - critic_config = get_gpt_config(args.critic_model) - with strategy.model_init_context(): - actor = OPTActor(config=model_config, lora_rank=args.lora_rank).cuda() - critic = OPTCritic(config=critic_config, lora_rank=args.lora_rank).cuda() - - initial_model = deepcopy(actor).cuda().half() - reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda().half() - - if args.use_kernels: - from coati.kernels import convert_to_xformer_model - - actor, critic, initial_model, reward_model = map( - convert_to_xformer_model, (actor, critic, initial_model, reward_model) - ) - - actor_numel = get_model_numel(actor, strategy) - critic_numel = get_model_numel(critic, strategy) - initial_model_numel = get_model_numel(initial_model, strategy) - reward_model_numel = get_model_numel(reward_model, strategy) - print_model_numel( - { - "Actor": actor_numel, - "Critic": critic_numel, - "Initial model": initial_model_numel, - "Reward model": reward_model_numel, - } - ) - performance_evaluator = PerformanceEvaluator( - actor_numel, - critic_numel, - initial_model_numel, - reward_model_numel, - enable_grad_checkpoint=False, - ignore_episodes=1, - ) - - if args.strategy.startswith("colossalai"): - actor_optim = HybridAdam(actor.parameters(), lr=5e-6) - critic_optim = HybridAdam(critic.parameters(), lr=5e-6) - else: - actor_optim = Adam(actor.parameters(), lr=5e-6) - critic_optim = Adam(critic.parameters(), lr=5e-6) - - tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") - tokenizer.pad_token = tokenizer.eos_token - tokenizer.padding_side = "left" - - (actor, actor_optim), (critic, critic_optim) = strategy.prepare((actor, actor_optim), (critic, critic_optim)) - - random_prompts = torch.randint(tokenizer.vocab_size, (1000, 256), device=torch.cuda.current_device()) - dataloader = DataLoader( - random_prompts, batch_size=args.experience_batch_size, shuffle=True, collate_fn=preprocess_batch - ) - - trainer = PPOTrainer( - strategy, - actor, - critic, - reward_model, - initial_model, - actor_optim, - critic_optim, - tokenizer=tokenizer, - ptx_coef=0, - train_batch_size=args.train_batch_size, - offload_inference_models=args.offload_inference_models, - max_length=512, - do_sample=True, - temperature=1.0, - top_k=50, - use_cache=True, - callbacks=[performance_evaluator], - ) - - trainer.fit( - prompt_dataloader=dataloader, - pretrain_dataloader=None, - num_episodes=args.num_episodes, - num_update_steps=args.num_update_steps, - num_collect_steps=args.num_collect_steps, - ) - - print_rank_0(f"Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB") - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--model", default="125m") - parser.add_argument("--critic_model", default="125m") - parser.add_argument( - "--strategy", - choices=[ - "ddp", - "colossalai_gemini", - "colossalai_gemini_cpu", - "colossalai_zero2", - "colossalai_zero2_cpu", - "colossalai_zero1", - "colossalai_zero1_cpu", - ], - default="ddp", - ) - parser.add_argument("--num_episodes", type=int, default=3) - parser.add_argument("--num_collect_steps", type=int, default=8) - parser.add_argument("--num_update_steps", type=int, default=1) - parser.add_argument("--train_batch_size", type=int, default=8) - parser.add_argument("--experience_batch_size", type=int, default=8) - parser.add_argument("--lora_rank", type=int, default=0) - parser.add_argument("--cuda_mem_frac", type=float, default=1.0) - parser.add_argument("--offload_inference_models", action="store_true", default=False) - parser.add_argument("--use_kernels", action="store_true", default=False) - args = parser.parse_args() - main(args) diff --git a/applications/Chat/coati/dataset/__init__.py b/applications/Chat/coati/dataset/__init__.py deleted file mode 100644 index 599b57609..000000000 --- a/applications/Chat/coati/dataset/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -from .prompt_dataset import PromptDataset -from .reward_dataset import HhRlhfDataset, RmStaticDataset -from .sft_dataset import SFTDataset, SupervisedDataset -from .utils import is_rank_0 - -__all__ = [ - "RmStaticDataset", - "HhRlhfDataset", - "SFTDataset", - "SupervisedDataset", - "PromptDataset", - "is_rank_0", -] diff --git a/applications/Chat/coati/dataset/conversation.py b/applications/Chat/coati/dataset/conversation.py deleted file mode 100644 index f2180d96b..000000000 --- a/applications/Chat/coati/dataset/conversation.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright 2023 lm-sys@FastChat -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import dataclasses -from enum import Enum, auto -from typing import List - - -class SeparatorStyle(Enum): - ADD_EOS_TOKEN = auto() - - -@dataclasses.dataclass -class Conversation: - system: str - roles: List[str] - messages: List[List[str]] - offset: int - sep_style: SeparatorStyle = SeparatorStyle.ADD_EOS_TOKEN - sep: str = "" - - skip_next: bool = False - - def get_prompt(self): - if self.sep_style == SeparatorStyle.ADD_EOS_TOKEN: - ret = self.system - for role, message in self.messages: - if message: - ret += role + ": " + message + self.sep - else: - ret += role + ": " - return ret - else: - raise ValueError(f"Invalid style: {self.sep_style}") - - def append_message(self, role, message): - self.messages.append([role, message]) - - def to_gradio_chatbot(self): - ret = [] - for i, (role, msg) in enumerate(self.messages[self.offset :]): - if i % 2 == 0: - ret.append([msg, None]) - else: - ret[-1][-1] = msg - return ret - - def copy(self): - return Conversation( - system=self.system, - roles=self.roles, - messages=[[x, y] for x, y in self.messages], - offset=self.offset, - sep_style=self.sep_style, - sep=self.sep, - ) - - def dict(self): - return { - "system": self.system, - "roles": self.roles, - "messages": self.messages, - "offset": self.offset, - "sep": self.sep, - } - - -conv = Conversation( - system="A chat between a curious human and an artificial intelligence assistant. " - "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", - roles=("Human", "Assistant"), - messages=(), - offset=0, - sep_style=SeparatorStyle.ADD_EOS_TOKEN, - sep="", -) - -default_conversation = conv diff --git a/applications/Chat/coati/dataset/prompt_dataset.py b/applications/Chat/coati/dataset/prompt_dataset.py deleted file mode 100644 index 17120e606..000000000 --- a/applications/Chat/coati/dataset/prompt_dataset.py +++ /dev/null @@ -1,45 +0,0 @@ -from collections import defaultdict -from typing import Dict - -import torch -import transformers -from torch.utils.data import Dataset - -from colossalai.logging import get_dist_logger - -from .utils import jload - - -class PromptDataset(Dataset): - """Dataset for supervised fine-tuning.""" - - def __init__( - self, - data_path: str, - tokenizer: transformers.PreTrainedTokenizer, - max_datasets_size: int = None, - max_length: int = 96, - ): - super(PromptDataset, self).__init__() - self.keyed_prompt = defaultdict(list) - self.logger = get_dist_logger() - self.logger.info("Loading data...") - list_data_dict = jload(data_path) - self.logger.info(f"Loaded {len(list_data_dict)} examples.") - - if max_datasets_size is not None: - self.logger.info(f"Limiting dataset to {max_datasets_size} examples.") - list_data_dict = list_data_dict[:max_datasets_size] - - instructions = [data_dict["instruction"] for data_dict in list_data_dict] - tokens = tokenizer( - instructions, return_tensors="pt", max_length=max_length, padding="max_length", truncation=True - ) - for k, tensor in tokens.items(): - self.keyed_prompt[k] = tensor.to(torch.cuda.current_device()).unbind() - - def __len__(self): - return len(self.keyed_prompt["input_ids"]) - - def __getitem__(self, i) -> Dict[str, torch.Tensor]: - return {k: v[i] for k, v in self.keyed_prompt.items()} diff --git a/applications/Chat/coati/dataset/reward_dataset.py b/applications/Chat/coati/dataset/reward_dataset.py deleted file mode 100644 index 3afcd7b69..000000000 --- a/applications/Chat/coati/dataset/reward_dataset.py +++ /dev/null @@ -1,88 +0,0 @@ -from typing import Callable - -from torch.utils.data import Dataset -from tqdm import tqdm - -from .utils import is_rank_0 - - -# Dahoas/rm-static -class RmStaticDataset(Dataset): - """ - Dataset for reward model - - Args: - dataset: dataset for reward model - tokenizer: tokenizer for reward model - max_length: max length of input - special_token: special token at the end of sentence - """ - - def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None: - super().__init__() - self.end_token = tokenizer.eos_token if special_token is None else special_token - - chosen = [data["prompt"] + data["chosen"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())] - chosen_token = tokenizer( - chosen, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" - ) - self.chosen = {"input_ids": chosen_token["input_ids"], "attention_mask": chosen_token["attention_mask"]} - - reject = [data["prompt"] + data["rejected"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())] - reject_token = tokenizer( - reject, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" - ) - self.reject = {"input_ids": reject_token["input_ids"], "attention_mask": reject_token["attention_mask"]} - - def __len__(self): - length = self.chosen["input_ids"].shape[0] - return length - - def __getitem__(self, idx): - return ( - self.chosen["input_ids"][idx], - self.chosen["attention_mask"][idx], - self.reject["input_ids"][idx], - self.reject["attention_mask"][idx], - ) - - -# Anthropic/hh-rlhf -class HhRlhfDataset(Dataset): - """ - Dataset for reward model - - Args: - dataset: dataset for reward model - tokenizer: tokenizer for reward model - max_length: max length of input - special_token: special token at the end of sentence - """ - - def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None: - super().__init__() - self.end_token = tokenizer.eos_token if special_token is None else special_token - - chosen = [data["chosen"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())] - chosen_token = tokenizer( - chosen, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" - ) - self.chosen = {"input_ids": chosen_token["input_ids"], "attention_mask": chosen_token["attention_mask"]} - - reject = [data["rejected"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())] - reject_token = tokenizer( - reject, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" - ) - self.reject = {"input_ids": reject_token["input_ids"], "attention_mask": reject_token["attention_mask"]} - - def __len__(self): - length = self.chosen["input_ids"].shape[0] - return length - - def __getitem__(self, idx): - return ( - self.chosen["input_ids"][idx], - self.chosen["attention_mask"][idx], - self.reject["input_ids"][idx], - self.reject["attention_mask"][idx], - ) diff --git a/applications/Chat/coati/dataset/sft_dataset.py b/applications/Chat/coati/dataset/sft_dataset.py deleted file mode 100644 index e67e16231..000000000 --- a/applications/Chat/coati/dataset/sft_dataset.py +++ /dev/null @@ -1,200 +0,0 @@ -# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import copy -from typing import Dict, Optional, Sequence, Tuple - -import torch -from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer -from torch.utils.data import Dataset -from tqdm import tqdm -from transformers import PreTrainedTokenizer - -from colossalai.logging import get_dist_logger - -from .utils import is_rank_0, jload - -logger = get_dist_logger() - -IGNORE_INDEX = -100 -PROMPT_DICT = { - "prompt_input": ( - "Below is an instruction that describes a task, paired with an input that provides further context. " - "Write a response that appropriately completes the request.\n\n" - "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" - ), - "prompt_no_input": ( - "Below is an instruction that describes a task. " - "Write a response that appropriately completes the request.\n\n" - "### Instruction:\n{instruction}\n\n### Response:" - ), -} - - -def _preprocess( - sources: Sequence[str], - targets: Sequence[str], - tokenizer: PreTrainedTokenizer, - max_length: int, -) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - """Preprocess the data by tokenizing.""" - sequences = [s + t + tokenizer.eos_token for s, t in zip(sources, targets)] - sequences_token = tokenizer( - sequences, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False - ) - - sources_token = tokenizer( - sources, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False - ) - - assert sequences_token["attention_mask"].dim() == 2, "seq2seq model should be preprocessed differently" - labels = copy.deepcopy(sequences_token["input_ids"]) - for i in range(labels.shape[0]): - source_len = sources_token["attention_mask"][i].sum().item() - pad_len = max_length - sequences_token["attention_mask"][i].sum().item() - if tokenizer.padding_side == "right": - # |prompt|completion|eos|pad| - labels[i][:source_len] = IGNORE_INDEX - if pad_len>0: - labels[i][-pad_len:] = IGNORE_INDEX - elif tokenizer.padding_side == "left": - # |pad|prompt|completion|eos| - labels[i][: pad_len + source_len] = IGNORE_INDEX - else: - raise RuntimeError() - - return sequences_token["input_ids"], labels, sequences_token["attention_mask"] - - -def _preprocess_chatglm( - sources: Sequence[str], - targets: Sequence[str], - tokenizer: PreTrainedTokenizer, - max_length: int, -) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - """ - Preprocess the data by tokenizing. - None for attention mask, ChatGLM will calculate attention mask according to input ids - """ - - labels = [] - input_ids = [] - for source, target in zip(sources, targets): - source_id = tokenizer.encode(text=source, add_special_tokens=False) - target_id = tokenizer.encode(text=target, add_special_tokens=False) - input_id = tokenizer.build_inputs_with_special_tokens(source_id, target_id) - # truncate - sp_token_list = [tokenizer.gmask_token_id, tokenizer.bos_token_id] - truncate_length = max(0, len(input_id) - max_length) - input_id = input_id[truncate_length:] - if truncate_length == len(source_id) + 1: - input_id = sp_token_list + input_id[1:] - elif truncate_length > len(source_id) + 1: - input_id = sp_token_list + input_id[2:] - - context_length = input_id.index(tokenizer.bos_token_id) - mask_position = context_length - 1 - label = [IGNORE_INDEX] * context_length + input_id[mask_position + 1 :] - - pad_len = max_length - len(input_id) - input_id = input_id + [tokenizer.pad_token_id] * pad_len - input_ids.append(input_id) - labels.append(label + [IGNORE_INDEX] * pad_len) - return torch.tensor(input_ids), torch.tensor(labels), None - - -class SFTDataset(Dataset): - """ - Dataset for sft model - - Args: - dataset: dataset for supervised model - tokenizer: tokenizer for supervised model - max_length: max length of input - """ - - def __init__(self, dataset: Dict, tokenizer: PreTrainedTokenizer, max_length: int = 512) -> None: - super().__init__() - self.input_ids = [] - - sources = [data["prompt"] for data in dataset] - targets = [data["completion"] + tokenizer.eos_token for data in tqdm(dataset, disable=not is_rank_0())] - - logger.info("Tokenizing inputs... This may take some time...") - if isinstance(tokenizer, ChatGLMTokenizer): - self.input_ids, self.labels, self.attention_mask = _preprocess_chatglm( - sources, targets, tokenizer, max_length - ) - else: - self.input_ids, self.labels, self.attention_mask = _preprocess(sources, targets, tokenizer, max_length) - - logger.info("Loaded dataset.") - - def __len__(self): - length = self.input_ids.shape[0] - return length - - def __getitem__(self, idx): - if self.attention_mask is not None: - return dict(input_ids=self.input_ids[idx], labels=self.labels[idx], attention_mask=self.attention_mask[idx]) - else: - return dict(input_ids=self.input_ids[idx], labels=self.labels[idx]) - - -class SupervisedDataset(Dataset): - """Dataset for supervised fine-tuning.""" - - def __init__( - self, - data_path: str, - tokenizer: PreTrainedTokenizer, - max_datasets_size: Optional[int] = None, - max_length: int = 512, - ): - super().__init__() - logger.info("Loading data...") - list_data_dict = jload(data_path) - logger.info(f"Loaded {len(list_data_dict)} examples.") - - if max_datasets_size is not None: - logger.info(f"Limiting dataset to {max_datasets_size} examples.") - list_data_dict = list_data_dict[:max_datasets_size] - - logger.info("Formatting inputs...") - prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"] - sources = [ - prompt_input.format_map(example) if "input" in example else prompt_no_input.format_map(example) - for example in list_data_dict - ] - targets = [example["output"] + tokenizer.eos_token for example in list_data_dict] - - logger.info("Tokenizing inputs... This may take some time...") - if isinstance(tokenizer, ChatGLMTokenizer): - self.input_ids, self.labels, self.attention_mask = _preprocess_chatglm( - sources, targets, tokenizer, max_length - ) - else: - self.input_ids, self.labels, self.attention_mask = _preprocess(sources, targets, tokenizer, max_length) - - logger.info("Loaded dataset.") - - def __len__(self): - length = self.input_ids.shape[0] - return length - - def __getitem__(self, idx): - if self.attention_mask is not None: - return dict(input_ids=self.input_ids[idx], labels=self.labels[idx], attention_mask=self.attention_mask[idx]) - else: - return dict(input_ids=self.input_ids[idx], labels=self.labels[idx]) diff --git a/applications/Chat/coati/dataset/utils.py b/applications/Chat/coati/dataset/utils.py deleted file mode 100644 index f37fce67a..000000000 --- a/applications/Chat/coati/dataset/utils.py +++ /dev/null @@ -1,22 +0,0 @@ -import io -import json - -import torch.distributed as dist - - -def is_rank_0() -> bool: - return not dist.is_initialized() or dist.get_rank() == 0 - - -def _make_r_io_base(f, mode: str): - if not isinstance(f, io.IOBase): - f = open(f, mode=mode) - return f - - -def jload(f, mode="r"): - """Load a .json file into a dictionary.""" - f = _make_r_io_base(f, mode) - jdict = json.load(f) - f.close() - return jdict diff --git a/applications/Chat/coati/experience_maker/naive.py b/applications/Chat/coati/experience_maker/naive.py deleted file mode 100644 index 941e1994b..000000000 --- a/applications/Chat/coati/experience_maker/naive.py +++ /dev/null @@ -1,71 +0,0 @@ -import torch -import torch.nn.functional as F -from coati.models.base import Actor, Critic, RewardModel -from coati.models.generation import generate -from coati.models.utils import calc_action_log_probs, compute_reward -from transformers import PreTrainedTokenizer - -from .base import Experience, ExperienceMaker - - -class NaiveExperienceMaker(ExperienceMaker): - """ - Naive experience maker. - """ - - def __init__( - self, - actor: Actor, - critic: Critic, - reward_model: RewardModel, - initial_model: Actor, - tokenizer: PreTrainedTokenizer, - kl_coef: float = 0.1, - ) -> None: - super().__init__(actor, critic, reward_model, initial_model) - self.tokenizer = tokenizer - self.kl_coef = kl_coef - - @torch.no_grad() - def make_experience(self, input_ids: torch.Tensor, **generate_kwargs) -> Experience: - self.actor.eval() - self.critic.eval() - self.initial_model.eval() - self.reward_model.eval() - - # generate sequences - sequences = generate(self.actor, input_ids, self.tokenizer, **generate_kwargs) - - # calculate auxiliary tensors - attention_mask = None - pad_token_id = self.tokenizer.pad_token_id - if pad_token_id is not None: - attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device) - - input_len = input_ids.size(1) - eos_token_id = self.tokenizer.eos_token_id - if eos_token_id is None: - action_mask = torch.ones_like(sequences, dtype=torch.bool) - else: - # left padding may be applied, only mask action - action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0 - action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input - action_mask[:, :input_len] = False - action_mask = action_mask[:, 1:] - action_mask = action_mask[:, -(sequences.size(1) - input_len) :] - num_actions = action_mask.size(1) - - actor_output = self.actor(sequences, attention_mask)["logits"] - action_log_probs = calc_action_log_probs(actor_output, sequences, num_actions) - base_model_output = self.initial_model(sequences, attention_mask)["logits"] - base_action_log_probs = calc_action_log_probs(base_model_output, sequences, num_actions) - value = self.critic(sequences, attention_mask) - r = self.reward_model(sequences, attention_mask) - reward = compute_reward(r, self.kl_coef, action_log_probs, base_action_log_probs, action_mask=action_mask) - - advantage = reward - value - # TODO(ver217): maybe normalize adv - if advantage.ndim == 1: - advantage = advantage.unsqueeze(-1) - - return Experience(sequences, action_log_probs, value, reward, advantage, attention_mask, action_mask) diff --git a/applications/Chat/coati/kernels/__init__.py b/applications/Chat/coati/kernels/__init__.py deleted file mode 100644 index 96d40c7c4..000000000 --- a/applications/Chat/coati/kernels/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -from .wrapper import convert_to_xformer_model, recover_from_xformer_model - -__all__ = [ - "convert_to_xformer_model", - "recover_from_xformer_model", -] diff --git a/applications/Chat/coati/kernels/opt_attn.py b/applications/Chat/coati/kernels/opt_attn.py deleted file mode 100644 index d1eb13918..000000000 --- a/applications/Chat/coati/kernels/opt_attn.py +++ /dev/null @@ -1,90 +0,0 @@ -from typing import Optional, Tuple - -import torch -import xformers.ops as xops -from torch import Tensor -from transformers.models.opt.modeling_opt import OPTAttention - - -# This is modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py -class XOPTAttention(OPTAttention): - # def _shape(self, tensor: Tensor, seq_len: int, bsz: int): - # return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous() - - def forward( - self, - hidden_states: Tensor, - key_value_states: Optional[Tensor] = None, - past_key_value: Optional[Tensor] = None, - attention_mask: Optional[Tensor] = None, - layer_head_mask: Optional[Tensor] = None, - output_attentions: bool = False, - ) -> Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]: - if not self.training: - return super().forward( - hidden_states, key_value_states, past_key_value, attention_mask, layer_head_mask, output_attentions - ) - """Input shape: Batch x Time x Channel""" - assert layer_head_mask is None, "Xformers attention does not support layer_head_mask" - assert not output_attentions, "Xformers attention does not support output_attentions" - - # if key_value_states are provided this layer is used as a cross-attention layer - # for the decoder - is_cross_attention = key_value_states is not None - - bsz, tgt_len, _ = hidden_states.size() - - # get query proj - query_states = self.q_proj(hidden_states) - # get key, value proj - if is_cross_attention and past_key_value is not None: - # reuse k,v, cross_attentions - key_states = past_key_value[0] - value_states = past_key_value[1] - elif is_cross_attention: - # cross_attentions - key_states = self._shape(self.k_proj(key_value_states), -1, bsz) - value_states = self._shape(self.v_proj(key_value_states), -1, bsz) - elif past_key_value is not None: - # reuse k, v, self_attention - key_states = self._shape(self.k_proj(hidden_states), -1, bsz) - value_states = self._shape(self.v_proj(hidden_states), -1, bsz) - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - else: - # self_attention - key_states = self._shape(self.k_proj(hidden_states), -1, bsz) - value_states = self._shape(self.v_proj(hidden_states), -1, bsz) - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_states, value_states) - - query_states = self._shape(query_states, tgt_len, bsz).transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - attn_output = xops.memory_efficient_attention( - query_states, - key_states, - value_states, - attn_bias=xops.LowerTriangularMask(), - p=self.dropout if self.training else 0.0, - scale=self.scaling, - ) - - # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be - # partitioned across GPUs when using tensor-parallelism. - attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) - - attn_output = self.out_proj(attn_output) - - attn_weights_reshaped = None - - return attn_output, attn_weights_reshaped, past_key_value diff --git a/applications/Chat/coati/kernels/wrapper.py b/applications/Chat/coati/kernels/wrapper.py deleted file mode 100644 index c55bda600..000000000 --- a/applications/Chat/coati/kernels/wrapper.py +++ /dev/null @@ -1,18 +0,0 @@ -import torch.nn as nn -from transformers.models.opt.modeling_opt import OPTAttention - -from .opt_attn import XOPTAttention - - -def convert_to_xformer_model(model: nn.Module) -> nn.Module: - for module in model.modules(): - if isinstance(module, OPTAttention): - module.__class__ = XOPTAttention - return model - - -def recover_from_xformer_model(model: nn.Module) -> nn.Module: - for module in model.modules(): - if isinstance(module, XOPTAttention): - module.__class__ = OPTAttention - return model diff --git a/applications/Chat/coati/models/__init__.py b/applications/Chat/coati/models/__init__.py deleted file mode 100644 index ad4a525b4..000000000 --- a/applications/Chat/coati/models/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -from .base import Actor, Critic, RewardModel -from .lora import LoRAModule, convert_to_lora_module -from .loss import LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss - -__all__ = [ - "Actor", - "Critic", - "RewardModel", - "PolicyLoss", - "ValueLoss", - "LogSigLoss", - "LogExpLoss", - "LoRAModule", - "convert_to_lora_module", -] diff --git a/applications/Chat/coati/models/base/__init__.py b/applications/Chat/coati/models/base/__init__.py deleted file mode 100644 index 5c9905bb2..000000000 --- a/applications/Chat/coati/models/base/__init__.py +++ /dev/null @@ -1,27 +0,0 @@ -from typing import Union - -import torch.nn as nn - -from .actor import Actor -from .critic import Critic -from .reward_model import RewardModel - - -def get_base_model(model: Union[Actor, Critic, RewardModel]) -> nn.Module: - """Get the base model of our wrapper classes. - For Actor, Critic and RewardModel, return ``model.model``, - it's usually a ``transformers.PreTrainedModel``. - - Args: - model (nn.Module): model to get base model from - - Returns: - nn.Module: the base model - """ - assert isinstance( - model, (Actor, Critic, RewardModel) - ), f"Expect Actor, Critic or RewardModel, got {type(model)}, use unwrap_model first." - return model.model - - -__all__ = ["Actor", "Critic", "RewardModel", "get_base_model"] diff --git a/applications/Chat/coati/models/base/actor.py b/applications/Chat/coati/models/base/actor.py deleted file mode 100644 index 8b2b81ed0..000000000 --- a/applications/Chat/coati/models/base/actor.py +++ /dev/null @@ -1,33 +0,0 @@ -from typing import Optional - -import torch -import torch.nn as nn - -from ..lora import LoRAModule - - -class Actor(LoRAModule): - """ - Actor model base class. - - Args: - model (nn.Module): Actor Model. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = "none") -> None: - super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias) - self.model = model - self.convert_to_lora() - - def forward( - self, - input_ids: torch.LongTensor, - attention_mask: Optional[torch.Tensor] = None, - **model_kwargs, - ) -> torch.Tensor: - """Returns model output.""" - output = self.model(input_ids, attention_mask=attention_mask, **model_kwargs) - return output - diff --git a/applications/Chat/coati/models/base/critic.py b/applications/Chat/coati/models/base/critic.py deleted file mode 100644 index 8672365f5..000000000 --- a/applications/Chat/coati/models/base/critic.py +++ /dev/null @@ -1,34 +0,0 @@ -import torch -import torch.nn as nn - -from ..lora import LoRAModule - - -class Critic(LoRAModule): - """ - Critic model base class. - - Args: - model (nn.Module): Critic model. - value_head (nn.Module): Value head to get value. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, model: nn.Module, value_head: nn.Module, lora_rank: int = 0, lora_train_bias: str = "none" - ) -> None: - super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias) - self.model = model - self.value_head = value_head - self.convert_to_lora() - - def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor: - outputs = self.model(sequences, attention_mask=attention_mask) - last_hidden_states = outputs["last_hidden_state"] - sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[ - 0 - ] - sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths] - values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, ) - return values diff --git a/applications/Chat/coati/models/base/reward_model.py b/applications/Chat/coati/models/base/reward_model.py deleted file mode 100644 index e9545d1cd..000000000 --- a/applications/Chat/coati/models/base/reward_model.py +++ /dev/null @@ -1,46 +0,0 @@ -from typing import Optional - -import torch -import torch.nn as nn - -from ..lora import LoRAModule - - -class RewardModel(LoRAModule): - """ - Reward model base class. - - Args: - model (nn.Module): Reward model. - value_head (nn.Module): Value head to get reward score. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - model: nn.Module, - value_head: Optional[nn.Module] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias) - self.model = model - self.convert_to_lora() - - if value_head is not None: - if value_head.out_features != 1: - raise ValueError("The value head of reward model's output dim should be 1!") - self.value_head = value_head - else: - self.value_head = nn.Linear(model.config.n_embd, 1) - - def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor: - outputs = self.model(sequences, attention_mask=attention_mask) - last_hidden_states = outputs["last_hidden_state"] - sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[ - 0 - ] - sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths] - values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, ) - return values diff --git a/applications/Chat/coati/models/bloom/__init__.py b/applications/Chat/coati/models/bloom/__init__.py deleted file mode 100644 index 7af199a67..000000000 --- a/applications/Chat/coati/models/bloom/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .bloom_actor import BLOOMActor -from .bloom_critic import BLOOMCritic -from .bloom_rm import BLOOMRM - -__all__ = ["BLOOMActor", "BLOOMCritic", "BLOOMRM"] diff --git a/applications/Chat/coati/models/bloom/bloom_actor.py b/applications/Chat/coati/models/bloom/bloom_actor.py deleted file mode 100644 index 73855a224..000000000 --- a/applications/Chat/coati/models/bloom/bloom_actor.py +++ /dev/null @@ -1,36 +0,0 @@ -from typing import Optional - -from transformers import BloomConfig, BloomForCausalLM - -from ..base import Actor - - -class BLOOMActor(Actor): - """ - BLOOM Actor model. - - Args: - pretrained (str): Pretrained model name or path. - config (BloomConfig): Model config. - checkpoint (bool): Enable gradient checkpointing. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: str = None, - config: Optional[BloomConfig] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = BloomForCausalLM.from_pretrained(pretrained) - elif config is not None: - model = BloomForCausalLM(config) - else: - model = BloomForCausalLM(BloomConfig()) - if checkpoint: - model.gradient_checkpointing_enable() - super().__init__(model, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/bloom/bloom_critic.py b/applications/Chat/coati/models/bloom/bloom_critic.py deleted file mode 100644 index b2d838f7f..000000000 --- a/applications/Chat/coati/models/bloom/bloom_critic.py +++ /dev/null @@ -1,36 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers import BloomConfig, BloomModel - -from ..base import Critic - - -class BLOOMCritic(Critic): - """ - BLOOM Critic model. - - Args: - pretrained (str): Pretrained model name or path. - config (BloomConfig): Model config. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: str = None, - config: Optional[BloomConfig] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - **kwargs, - ) -> None: - if pretrained is not None: - model = BloomModel.from_pretrained(pretrained) - elif config is not None: - model = BloomModel(config) - else: - model = BloomModel(BloomConfig()) - - value_head = nn.Linear(model.config.hidden_size, 1) - super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs) diff --git a/applications/Chat/coati/models/bloom/bloom_rm.py b/applications/Chat/coati/models/bloom/bloom_rm.py deleted file mode 100644 index c09457ddc..000000000 --- a/applications/Chat/coati/models/bloom/bloom_rm.py +++ /dev/null @@ -1,36 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers import BloomConfig, BloomModel - -from ..base import RewardModel - - -class BLOOMRM(RewardModel): - """ - BLOOM Reward model. - - Args: - pretrained (str): Pretrained model name or path. - config (BloomConfig): Model config. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: str = None, - config: Optional[BloomConfig] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = BloomModel.from_pretrained(pretrained) - elif config is not None: - model = BloomModel(config) - else: - model = BloomModel(BloomConfig()) - - value_head = nn.Linear(model.config.hidden_size, 1) - value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1)) - super().__init__(model, value_head, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/chatglm/__init__.py b/applications/Chat/coati/models/chatglm/__init__.py deleted file mode 100644 index 5956f5a8e..000000000 --- a/applications/Chat/coati/models/chatglm/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .chatglm_actor import ChatGLMActor - -__all__ = ["ChatGLMActor"] diff --git a/applications/Chat/coati/models/chatglm/chatglm_actor.py b/applications/Chat/coati/models/chatglm/chatglm_actor.py deleted file mode 100644 index 00a61561e..000000000 --- a/applications/Chat/coati/models/chatglm/chatglm_actor.py +++ /dev/null @@ -1,31 +0,0 @@ -from typing import Optional - -from ..base import Actor -from .configuration_chatglm import ChatGLMConfig -from .modeling_chatglm import ChatGLMForConditionalGeneration - - -class ChatGLMActor(Actor): - """ - ChatGLM Actor model. - - Args: - pretrained (str): Pretrained model name or path. - config (ChatGLMConfig): Model config. - checkpoint (bool): Enable gradient checkpointing. - - do not support lora for now. - """ - - def __init__( - self, pretrained: str = None, config: Optional[ChatGLMConfig] = None, checkpoint: bool = False - ) -> None: - if pretrained is not None: - model = ChatGLMForConditionalGeneration.from_pretrained(pretrained) - elif config is not None: - model = ChatGLMForConditionalGeneration(config) - else: - model = ChatGLMForConditionalGeneration(ChatGLMConfig()) - if checkpoint: - model.gradient_checkpointing_enable() - super().__init__(model, lora_rank=0, lora_train_bias="none") diff --git a/applications/Chat/coati/models/chatglm/chatglm_tokenizer.py b/applications/Chat/coati/models/chatglm/chatglm_tokenizer.py deleted file mode 100644 index 221ef044b..000000000 --- a/applications/Chat/coati/models/chatglm/chatglm_tokenizer.py +++ /dev/null @@ -1,442 +0,0 @@ -""" -This code is copied from https://huggingface.co/THUDM/chatglm-6b/blob/main/tokenization_chatglm.py -""" -"""Tokenization classes for ChatGLM.""" -import os -from typing import Dict, List, Optional, Union - -import numpy as np -import sentencepiece as spm -from transformers.tokenization_utils import PreTrainedTokenizer -from transformers.tokenization_utils_base import BatchEncoding, EncodedInput -from transformers.utils import PaddingStrategy, logging - -logger = logging.get_logger(__name__) - -PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { - "THUDM/chatglm-6b": 2048, -} - - -class TextTokenizer: - def __init__(self, model_path): - self.sp = spm.SentencePieceProcessor() - self.sp.Load(model_path) - self.num_tokens = self.sp.vocab_size() - - def encode(self, text): - return self.sp.EncodeAsIds(text) - - def decode(self, ids: List[int]): - return self.sp.DecodeIds(ids) - - def tokenize(self, text): - return self.sp.EncodeAsPieces(text) - - def convert_tokens_to_string(self, tokens): - return self.sp.DecodePieces(tokens) - - def convert_tokens_to_ids(self, tokens): - return [self.sp.PieceToId(token) for token in tokens] - - def convert_token_to_id(self, token): - return self.sp.PieceToId(token) - - def convert_id_to_token(self, idx): - return self.sp.IdToPiece(idx) - - def __len__(self): - return self.num_tokens - - -class SPTokenizer: - def __init__( - self, - vocab_file, - num_image_tokens=20000, - max_blank_length=80, - byte_fallback=True, - ): - assert vocab_file is not None - self.vocab_file = vocab_file - self.num_image_tokens = num_image_tokens - self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "", "", "", "", ""] - self.max_blank_length = max_blank_length - self.byte_fallback = byte_fallback - self.text_tokenizer = TextTokenizer(vocab_file) - - def _get_text_tokenizer(self): - return self.text_tokenizer - - @staticmethod - def get_blank_token(length: int): - assert length >= 2 - return f"<|blank_{length}|>" - - @staticmethod - def get_tab_token(): - return f"<|tab|>" - - @property - def num_text_tokens(self): - return self.text_tokenizer.num_tokens - - @property - def num_tokens(self): - return self.num_image_tokens + self.num_text_tokens - - @staticmethod - def _encode_whitespaces(text: str, max_len: int = 80): - text = text.replace("\t", SPTokenizer.get_tab_token()) - for i in range(max_len, 1, -1): - text = text.replace(" " * i, SPTokenizer.get_blank_token(i)) - return text - - def _preprocess(self, text: str, linebreak=True, whitespaces=True): - if linebreak: - text = text.replace("\n", "") - if whitespaces: - text = self._encode_whitespaces(text, max_len=self.max_blank_length) - return text - - def encode(self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True) -> List[int]: - """ - @param text: Text to encode. - @param linebreak: Whether to encode newline (\n) in text. - @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. - @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. - @param add_dummy_prefix: Whether to add dummy blank space in the beginning. - """ - text = self._preprocess(text, linebreak, whitespaces) - if not add_dummy_prefix: - text = "" + text - tmp = self._get_text_tokenizer().encode(text) - tokens = [x + self.num_image_tokens for x in tmp] - return tokens if add_dummy_prefix else tokens[2:] - - def postprocess(self, text): - text = text.replace("", "\n") - text = text.replace(SPTokenizer.get_tab_token(), "\t") - for i in range(2, self.max_blank_length + 1): - text = text.replace(self.get_blank_token(i), " " * i) - return text - - def decode(self, text_ids: List[int]) -> str: - ids = [int(_id) - self.num_image_tokens for _id in text_ids] - ids = [_id for _id in ids if _id >= 0] - text = self._get_text_tokenizer().decode(ids) - text = self.postprocess(text) - return text - - def decode_tokens(self, tokens: List[str]) -> str: - text = self._get_text_tokenizer().convert_tokens_to_string(tokens) - text = self.postprocess(text) - return text - - def tokenize(self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True) -> List[str]: - """ - @param text: Text to encode. - @param linebreak: Whether to encode newline (\n) in text. - @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. - @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. - @param add_dummy_prefix: Whether to add dummy blank space in the beginning. - """ - text = self._preprocess(text, linebreak, whitespaces) - if not add_dummy_prefix: - text = "" + text - tokens = self._get_text_tokenizer().tokenize(text) - return tokens if add_dummy_prefix else tokens[2:] - - def __getitem__(self, x: Union[int, str]): - if isinstance(x, int): - if x < self.num_image_tokens: - return "".format(x) - else: - return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens) - elif isinstance(x, str): - if x.startswith("") and x[7:-1].isdigit(): - return int(x[7:-1]) - else: - return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens - else: - raise ValueError("The key should be str or int.") - - -class ChatGLMTokenizer(PreTrainedTokenizer): - """ - Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding. - - Args: - vocab_file (`str`): - Path to the vocabulary file. - """ - - vocab_files_names = {"vocab_file": "ice_text.model"} - max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES - model_input_names = ["input_ids", "attention_mask", "position_ids"] - - def __init__( - self, - vocab_file, - do_lower_case=False, - remove_space=False, - bos_token="", - eos_token="", - end_token="", - mask_token="[MASK]", - gmask_token="[gMASK]", - padding_side="left", - pad_token="", - unk_token="", - num_image_tokens=20000, - **kwargs, - ) -> None: - super().__init__( - do_lower_case=do_lower_case, - remove_space=remove_space, - padding_side=padding_side, - bos_token=bos_token, - eos_token=eos_token, - end_token=end_token, - mask_token=mask_token, - gmask_token=gmask_token, - pad_token=pad_token, - unk_token=unk_token, - num_image_tokens=num_image_tokens, - **kwargs, - ) - - self.do_lower_case = do_lower_case - self.remove_space = remove_space - self.vocab_file = vocab_file - - self.bos_token = bos_token - self.eos_token = eos_token - self.end_token = end_token - self.mask_token = mask_token - self.gmask_token = gmask_token - - self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens) - - """ Initialisation """ - - @property - def gmask_token_id(self) -> Optional[int]: - if self.gmask_token is None: - return None - return self.convert_tokens_to_ids(self.gmask_token) - - @property - def end_token_id(self) -> Optional[int]: - """ - `Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been - set. - """ - if self.end_token is None: - return None - return self.convert_tokens_to_ids(self.end_token) - - @property - def vocab_size(self): - """Returns vocab size""" - return self.sp_tokenizer.num_tokens - - def get_vocab(self): - """Returns vocab as a dict""" - vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} - vocab.update(self.added_tokens_encoder) - return vocab - - def preprocess_text(self, inputs): - if self.remove_space: - outputs = " ".join(inputs.strip().split()) - else: - outputs = inputs - - if self.do_lower_case: - outputs = outputs.lower() - - return outputs - - def _tokenize(self, text, **kwargs): - """Returns a tokenized string.""" - text = self.preprocess_text(text) - - seq = self.sp_tokenizer.tokenize(text) - - return seq - - def convert_tokens_to_string(self, tokens: List[str]) -> str: - return self.sp_tokenizer.decode_tokens(tokens) - - def _decode(self, token_ids: Union[int, List[int]], **kwargs) -> str: - if isinstance(token_ids, int): - token_ids = [token_ids] - if len(token_ids) == 0: - return "" - if self.pad_token_id in token_ids: # remove pad - token_ids = list(filter((self.pad_token_id).__ne__, token_ids)) - return super()._decode(token_ids, **kwargs) - - def _convert_token_to_id(self, token): - """Converts a token (str) in an id using the vocab.""" - return self.sp_tokenizer[token] - - def _convert_id_to_token(self, index): - """Converts an index (integer) in a token (str) using the vocab.""" - return self.sp_tokenizer[index] - - def save_vocabulary(self, save_directory, filename_prefix=None): - """ - Save the vocabulary and special tokens file to a directory. - - Args: - save_directory (`str`): - The directory in which to save the vocabulary. - filename_prefix (`str`, *optional*): - An optional prefix to add to the named of the saved files. - - Returns: - `Tuple(str)`: Paths to the files saved. - """ - if os.path.isdir(save_directory): - vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) - else: - vocab_file = save_directory - - with open(self.vocab_file, "rb") as fin: - proto_str = fin.read() - - with open(vocab_file, "wb") as writer: - writer.write(proto_str) - - return (vocab_file,) - - def build_inputs_with_special_tokens( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None - ) -> List[int]: - """ - Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and - adding special tokens. A BERT sequence has the following format: - - - single sequence: `[CLS] X [SEP]` - - pair of sequences: `[CLS] A [SEP] B [SEP]` - - Args: - token_ids_0 (`List[int]`): - List of IDs to which the special tokens will be added. - token_ids_1 (`List[int]`, *optional*): - Optional second list of IDs for sequence pairs. - - Returns: - `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. - """ - gmask_id = self.sp_tokenizer[self.gmask_token] - self.sp_tokenizer[self.eos_token] - token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]] - if token_ids_1 is not None: - token_ids_0 = token_ids_0 + token_ids_1 - return token_ids_0 - - def _pad( - self, - encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], - max_length: Optional[int] = None, - padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, - pad_to_multiple_of: Optional[int] = None, - return_attention_mask: Optional[bool] = None, - ) -> dict: - """ - Pad encoded inputs (on left/right and up to predefined length or max length in the batch) - - Args: - encoded_inputs: - Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). - max_length: maximum length of the returned list and optionally padding length (see below). - Will truncate by taking into account the special tokens. - padding_strategy: PaddingStrategy to use for padding. - - - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - - PaddingStrategy.DO_NOT_PAD: Do not pad - The tokenizer padding sides are defined in self.padding_side: - - - 'left': pads on the left of the sequences - - 'right': pads on the right of the sequences - pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. - This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability - `>= 7.5` (Volta). - return_attention_mask: - (optional) Set to False to avoid returning attention mask (default: set to model specifics) - """ - # Load from model defaults - bos_token_id = self.sp_tokenizer[self.bos_token] - mask_token_id = self.sp_tokenizer[self.mask_token] - gmask_token_id = self.sp_tokenizer[self.gmask_token] - assert self.padding_side == "left" - - required_input = encoded_inputs[self.model_input_names[0]] - seq_length = len(required_input) - - if padding_strategy == PaddingStrategy.LONGEST: - max_length = len(required_input) - - if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): - max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of - - needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length - - # Initialize attention mask if not present. - if max_length is not None: - if "attention_mask" not in encoded_inputs: - if bos_token_id in required_input: - context_length = required_input.index(bos_token_id) - else: - context_length = seq_length - attention_mask = np.ones((1, seq_length, seq_length)) - attention_mask = np.tril(attention_mask) - attention_mask[:, :, :context_length] = 1 - attention_mask = np.bool_(attention_mask < 0.5) - encoded_inputs["attention_mask"] = attention_mask - - if "position_ids" not in encoded_inputs: - if bos_token_id in required_input: - context_length = required_input.index(bos_token_id) - else: - context_length = seq_length - position_ids = np.arange(seq_length, dtype=np.int64) - mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id - if mask_token in required_input: - mask_position = required_input.index(mask_token) - position_ids[context_length:] = mask_position - block_position_ids = np.concatenate( - [ - np.zeros(context_length, dtype=np.int64), - np.arange(1, seq_length - context_length + 1, dtype=np.int64), - ] - ) - encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0) - - if needs_to_be_padded: - difference = max_length - len(required_input) - - if "attention_mask" in encoded_inputs: - encoded_inputs["attention_mask"] = np.pad( - encoded_inputs["attention_mask"], - pad_width=[(0, 0), (difference, 0), (difference, 0)], - mode="constant", - constant_values=True, - ) - if "token_type_ids" in encoded_inputs: - encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ - "token_type_ids" - ] - if "special_tokens_mask" in encoded_inputs: - encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] - if "position_ids" in encoded_inputs: - encoded_inputs["position_ids"] = np.pad( - encoded_inputs["position_ids"], pad_width=[(0, 0), (difference, 0)] - ) - encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input - - return encoded_inputs diff --git a/applications/Chat/coati/models/chatglm/configuration_chatglm.py b/applications/Chat/coati/models/chatglm/configuration_chatglm.py deleted file mode 100644 index a6d2ccd18..000000000 --- a/applications/Chat/coati/models/chatglm/configuration_chatglm.py +++ /dev/null @@ -1,101 +0,0 @@ -""" -This code is copied from https://huggingface.co/THUDM/chatglm-6b/resolve/main/configuration_chatglm.py -""" - -""" ChatGLM model configuration """ - -from transformers.configuration_utils import PretrainedConfig -from transformers.utils import logging - -logger = logging.get_logger(__name__) - - -class ChatGLMConfig(PretrainedConfig): - r""" - This is the configuration class to store the configuration of a [`~ChatGLMModel`]. - It is used to instantiate an ChatGLM model according to the specified arguments, defining the model - architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of - the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture. - - Configuration objects inherit from [`PretrainedConfig`] and can be used - to control the model outputs. Read the documentation from [`PretrainedConfig`] - for more information. - - - Args: - vocab_size (`int`, *optional*, defaults to 150528): - Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the - `inputs_ids` passed when calling [`~ChatGLMModel`] or - [`~TFChatGLMModel`]. - hidden_size (`int`, *optional*, defaults to 4096): - Dimension of the encoder layers and the pooler layer. - num_hidden_layers (`int`, *optional*, defaults to 28): - Number of hidden layers in the Transformer encoder. - num_attention_heads (`int`, *optional*, defaults to 32): - Number of attention heads for each attention layer in the Transformer encoder. - inner_hidden_size (`int`, *optional*, defaults to 16384): - Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. - max_sequence_length (`int`, *optional*, defaults to 512): - The maximum sequence length that this model might ever be used with. - Typically set this to something large just in case (e.g., 512 or 1024 or 2048). - layernorm_epsilon (`float`, *optional*, defaults to 1e-5): - The epsilon used by the layer normalization layers. - use_cache (`bool`, *optional*, defaults to `True`): - Whether the model should return the last key/values attentions (not used by all models). - Example: - - ```python - >>> from configuration_chatglm import ChatGLMConfig - >>> from modeling_chatglm import ChatGLMModel - - >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration - >>> configuration = ChatGLMConfig() - - >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration - >>> model = ChatGLMModel(configuration) - - >>> # Accessing the model configuration - >>> configuration = model.config - ```""" - model_type = "chatglm" - - def __init__( - self, - vocab_size=130528, - hidden_size=4096, - num_layers=28, - num_attention_heads=32, - layernorm_epsilon=1e-5, - use_cache=True, - bos_token_id=130004, - eos_token_id=130005, - mask_token_id=130000, - gmask_token_id=130001, - pad_token_id=3, - max_sequence_length=2048, - inner_hidden_size=16384, - position_encoding_2d=True, - quantization_bit=0, - pre_seq_len=None, - prefix_projection=False, - **kwargs, - ): - self.num_layers = num_layers - self.vocab_size = vocab_size - self.hidden_size = hidden_size - self.num_attention_heads = num_attention_heads - self.max_sequence_length = max_sequence_length - self.layernorm_epsilon = layernorm_epsilon - self.inner_hidden_size = inner_hidden_size - self.use_cache = use_cache - self.bos_token_id = bos_token_id - self.eos_token_id = eos_token_id - self.pad_token_id = pad_token_id - self.mask_token_id = mask_token_id - self.gmask_token_id = gmask_token_id - self.position_encoding_2d = position_encoding_2d - self.quantization_bit = quantization_bit - self.pre_seq_len = pre_seq_len - self.prefix_projection = prefix_projection - - super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) diff --git a/applications/Chat/coati/models/chatglm/modeling_chatglm.py b/applications/Chat/coati/models/chatglm/modeling_chatglm.py deleted file mode 100644 index d1d15c68f..000000000 --- a/applications/Chat/coati/models/chatglm/modeling_chatglm.py +++ /dev/null @@ -1,1477 +0,0 @@ -""" -This code is copied from https://huggingface.co/THUDM/chatglm-6b/resolve/main/modeling_chatglm.py -""" - -""" PyTorch ChatGLM model. """ - -import copy -import math -import os -import re -import sys -import warnings -from typing import Any, Callable, Dict, List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from torch import nn -from torch.nn import CrossEntropyLoss, LayerNorm -from torch.nn.utils import skip_init -from transformers.generation.logits_process import LogitsProcessor -from transformers.generation.utils import GenerationConfig, LogitsProcessorList, ModelOutput, StoppingCriteriaList -from transformers.modeling_outputs import ( - BaseModelOutputWithPast, - BaseModelOutputWithPastAndCrossAttentions, - CausalLMOutputWithPast, -) -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ( - add_code_sample_docstrings, - add_start_docstrings, - add_start_docstrings_to_model_forward, - logging, -) - -from .configuration_chatglm import ChatGLMConfig - -# flags required to enable jit fusion kernels - -if sys.platform != "darwin": - torch._C._jit_set_profiling_mode(False) - torch._C._jit_set_profiling_executor(False) - torch._C._jit_override_can_fuse_on_cpu(True) - torch._C._jit_override_can_fuse_on_gpu(True) - -logger = logging.get_logger(__name__) - -_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B" -_CONFIG_FOR_DOC = "ChatGLM6BConfig" - -CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [ - "THUDM/chatglm-6b", - # See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm -] - - -class InvalidScoreLogitsProcessor(LogitsProcessor): - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: - if torch.isnan(scores).any() or torch.isinf(scores).any(): - scores.zero_() - scores[..., 5] = 5e4 - return scores - - -def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path): - """Load tf checkpoints in a pytorch model.""" - try: - import re - - import numpy as np - import tensorflow as tf - except ImportError: - logger.error( - "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " - "https://www.tensorflow.org/install/ for installation instructions." - ) - raise - tf_path = os.path.abspath(tf_checkpoint_path) - logger.info(f"Converting TensorFlow checkpoint from {tf_path}") - # Load weights from TF model - init_vars = tf.train.list_variables(tf_path) - names = [] - arrays = [] - for name, shape in init_vars: - logger.info(f"Loading TF weight {name} with shape {shape}") - array = tf.train.load_variable(tf_path, name) - names.append(name) - arrays.append(array) - - for name, array in zip(names, arrays): - name = name.split("/") - # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v - # which are not required for using pretrained model - if any( - n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] - for n in name - ): - logger.info(f"Skipping {'/'.join(name)}") - continue - pointer = model - for m_name in name: - if re.fullmatch(r"[A-Za-z]+_\d+", m_name): - scope_names = re.split(r"_(\d+)", m_name) - else: - scope_names = [m_name] - if scope_names[0] == "kernel" or scope_names[0] == "gamma": - pointer = getattr(pointer, "weight") - elif scope_names[0] == "output_bias" or scope_names[0] == "beta": - pointer = getattr(pointer, "bias") - elif scope_names[0] == "output_weights": - pointer = getattr(pointer, "weight") - elif scope_names[0] == "squad": - pointer = getattr(pointer, "classifier") - else: - try: - pointer = getattr(pointer, scope_names[0]) - except AttributeError: - logger.info(f"Skipping {'/'.join(name)}") - continue - if len(scope_names) >= 2: - num = int(scope_names[1]) - pointer = pointer[num] - if m_name[-11:] == "_embeddings": - pointer = getattr(pointer, "weight") - elif m_name == "kernel": - array = np.transpose(array) - try: - assert ( - pointer.shape == array.shape - ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" - except AssertionError as e: - e.args += (pointer.shape, array.shape) - raise - logger.info(f"Initialize PyTorch weight {name}") - pointer.data = torch.from_numpy(array) - return model - - -class PrefixEncoder(torch.nn.Module): - """ - The torch.nn model to encode the prefix - Input shape: (batch-size, prefix-length) - Output shape: (batch-size, prefix-length, 2*layers*hidden) - """ - - def __init__(self, config): - super().__init__() - self.prefix_projection = config.prefix_projection - if self.prefix_projection: - # Use a two-layer MLP to encode the prefix - self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size) - self.trans = torch.nn.Sequential( - torch.nn.Linear(config.hidden_size, config.hidden_size), - torch.nn.Tanh(), - torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2), - ) - else: - self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2) - - def forward(self, prefix: torch.Tensor): - if self.prefix_projection: - prefix_tokens = self.embedding(prefix) - past_key_values = self.trans(prefix_tokens) - else: - past_key_values = self.embedding(prefix) - return past_key_values - - -@torch.jit.script -def gelu_impl(x): - """OpenAI's gelu implementation.""" - return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x))) - - -def gelu(x): - return gelu_impl(x) - - -class RotaryEmbedding(torch.nn.Module): - def __init__(self, dim, base=10000, precision=torch.half, learnable=False): - super().__init__() - inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) - inv_freq = inv_freq.half() - self.learnable = learnable - if learnable: - self.inv_freq = torch.nn.Parameter(inv_freq) - self.max_seq_len_cached = None - else: - self.register_buffer("inv_freq", inv_freq) - self.max_seq_len_cached = None - self.cos_cached = None - self.sin_cached = None - self.precision = precision - - def _load_from_state_dict( - self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs - ): - pass - - def forward(self, x, seq_dim=1, seq_len=None): - if seq_len is None: - seq_len = x.shape[seq_dim] - if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached): - self.max_seq_len_cached = None if self.learnable else seq_len - t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype) - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - if self.precision == torch.bfloat16: - emb = emb.float() - - # [sx, 1 (b * np), hn] - cos_cached = emb.cos()[:, None, :] - sin_cached = emb.sin()[:, None, :] - if self.precision == torch.bfloat16: - cos_cached = cos_cached.bfloat16() - sin_cached = sin_cached.bfloat16() - if self.learnable: - return cos_cached, sin_cached - self.cos_cached, self.sin_cached = cos_cached, sin_cached - return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] - - def _apply(self, fn): - if self.cos_cached is not None: - self.cos_cached = fn(self.cos_cached) - if self.sin_cached is not None: - self.sin_cached = fn(self.sin_cached) - return super()._apply(fn) - - -def rotate_half(x): - x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions - - -@torch.jit.script -def apply_rotary_pos_emb_index(q, k, cos, sin, position_id): - # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn] - cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), F.embedding( - position_id, sin.squeeze(1) - ).unsqueeze(2) - q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) - return q, k - - -def attention_fn( - self, - query_layer, - key_layer, - value_layer, - attention_mask, - hidden_size_per_partition, - layer_id, - layer_past=None, - scaling_attention_score=True, - use_cache=False, -): - if layer_past is not None: - past_key, past_value = layer_past[0], layer_past[1] - key_layer = torch.cat((past_key, key_layer), dim=0) - value_layer = torch.cat((past_value, value_layer), dim=0) - - # seqlen, batch, num_attention_heads, hidden_size_per_attention_head - seq_len, b, nh, hidden_size = key_layer.shape - - if use_cache: - present = (key_layer, value_layer) - else: - present = None - - query_key_layer_scaling_coeff = float(layer_id + 1) - if scaling_attention_score: - query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff) - - # =================================== - # Raw attention scores. [b, np, s, s] - # =================================== - - # [b, np, sq, sk] - output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) - - # [sq, b, np, hn] -> [sq, b * np, hn] - query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) - # [sk, b, np, hn] -> [sk, b * np, hn] - key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) - - matmul_result = torch.zeros( - 1, - 1, - 1, - dtype=query_layer.dtype, - device=query_layer.device, - ) - - matmul_result = torch.baddbmm( - matmul_result, - query_layer.transpose(0, 1), # [b * np, sq, hn] - key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] - beta=0.0, - alpha=1.0, - ) - - # change view to [b, np, sq, sk] - attention_scores = matmul_result.view(*output_size) - - if self.scale_mask_softmax: - self.scale_mask_softmax.scale = query_key_layer_scaling_coeff - attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous()) - else: - if not (attention_mask == 0).all(): - # if auto-regressive, skip - attention_scores.masked_fill_(attention_mask, -10000.0) - dtype = attention_scores.dtype - attention_scores = attention_scores.float() - attention_scores = attention_scores * query_key_layer_scaling_coeff - - attention_probs = F.softmax(attention_scores, dim=-1) - - attention_probs = attention_probs.type(dtype) - - # ========================= - # Context layer. [sq, b, hp] - # ========================= - - # value_layer -> context layer. - # [sk, b, np, hn] --> [b, np, sq, hn] - - # context layer shape: [b, np, sq, hn] - output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) - - # change view [sk, b * np, hn] - value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) - - # change view [b * np, sq, sk] - attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) - - # matmul: [b * np, sq, hn] - context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) - - # change view [b, np, sq, hn] - context_layer = context_layer.view(*output_size) - - # [b, np, sq, hn] --> [sq, b, np, hn] - context_layer = context_layer.permute(2, 0, 1, 3).contiguous() - - # [sq, b, np, hn] --> [sq, b, hp] - new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,) - context_layer = context_layer.view(*new_context_layer_shape) - - outputs = (context_layer, present, attention_probs) - - return outputs - - -def default_init(cls, *args, **kwargs): - return cls(*args, **kwargs) - - -class SelfAttention(torch.nn.Module): - def __init__( - self, - hidden_size, - num_attention_heads, - layer_id, - hidden_size_per_attention_head=None, - bias=True, - params_dtype=torch.float, - position_encoding_2d=True, - empty_init=True, - ): - if empty_init: - init_method = skip_init - else: - init_method = default_init - super(SelfAttention, self).__init__() - - self.layer_id = layer_id - self.hidden_size = hidden_size - self.hidden_size_per_partition = hidden_size - self.num_attention_heads = num_attention_heads - self.num_attention_heads_per_partition = num_attention_heads - self.position_encoding_2d = position_encoding_2d - self.rotary_emb = RotaryEmbedding( - self.hidden_size // (self.num_attention_heads * 2) - if position_encoding_2d - else self.hidden_size // self.num_attention_heads, - base=10000, - precision=torch.half, - learnable=False, - ) - - self.scale_mask_softmax = None - - if hidden_size_per_attention_head is None: - self.hidden_size_per_attention_head = hidden_size // num_attention_heads - else: - self.hidden_size_per_attention_head = hidden_size_per_attention_head - - self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head - - # Strided linear layer. - self.query_key_value = init_method( - torch.nn.Linear, - hidden_size, - 3 * self.inner_hidden_size, - bias=bias, - dtype=params_dtype, - ) - - self.dense = init_method( - torch.nn.Linear, - self.inner_hidden_size, - hidden_size, - bias=bias, - dtype=params_dtype, - ) - - @staticmethod - def attention_mask_func(attention_scores, attention_mask): - attention_scores.masked_fill_(attention_mask, -10000.0) - return attention_scores - - def split_tensor_along_last_dim(self, tensor, num_partitions, contiguous_split_chunks=False): - """Split a tensor along its last dimension. - Arguments: - tensor: input tensor. - num_partitions: number of partitions to split the tensor - contiguous_split_chunks: If True, make each chunk contiguous - in memory. - """ - # Get the size and dimension. - last_dim = tensor.dim() - 1 - last_dim_size = tensor.size()[last_dim] // num_partitions - # Split. - tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) - # Note: torch.split does not create contiguous tensors by default. - if contiguous_split_chunks: - return tuple(chunk.contiguous() for chunk in tensor_list) - - return tensor_list - - def forward( - self, - hidden_states: torch.Tensor, - position_ids, - attention_mask: torch.Tensor, - layer_id, - layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, - use_cache: bool = False, - output_attentions: bool = False, - ): - """ - hidden_states: [seq_len, batch, hidden_size] - attention_mask: [(1, 1), seq_len, seq_len] - """ - - # [seq_len, batch, 3 * hidden_size] - mixed_raw_layer = self.query_key_value(hidden_states) - - # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head] - new_tensor_shape = mixed_raw_layer.size()[:-1] + ( - self.num_attention_heads_per_partition, - 3 * self.hidden_size_per_attention_head, - ) - mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape) - - # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head] - (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3) - - if self.position_encoding_2d: - q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1)) - k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1)) - cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1) - position_ids, block_position_ids = ( - position_ids[:, 0, :].transpose(0, 1).contiguous(), - position_ids[:, 1, :].transpose(0, 1).contiguous(), - ) - q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids) - q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids) - query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1)) - key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1)) - else: - position_ids = position_ids.transpose(0, 1) - cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1) - # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head] - query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids) - - # [seq_len, batch, hidden_size] - context_layer, present, attention_probs = attention_fn( - self=self, - query_layer=query_layer, - key_layer=key_layer, - value_layer=value_layer, - attention_mask=attention_mask, - hidden_size_per_partition=self.hidden_size_per_partition, - layer_id=layer_id, - layer_past=layer_past, - use_cache=use_cache, - ) - - output = self.dense(context_layer) - - outputs = (output, present) - - if output_attentions: - outputs += (attention_probs,) - - return outputs # output, present, attention_probs - - -class GEGLU(torch.nn.Module): - def __init__(self): - super().__init__() - self.activation_fn = F.gelu - - def forward(self, x): - # dim=-1 breaks in jit for pt<1.10 - x1, x2 = x.chunk(2, dim=(x.ndim - 1)) - return x1 * self.activation_fn(x2) - - -class GLU(torch.nn.Module): - def __init__( - self, - hidden_size, - inner_hidden_size=None, - layer_id=None, - bias=True, - activation_func=gelu, - params_dtype=torch.float, - empty_init=True, - ): - super(GLU, self).__init__() - if empty_init: - init_method = skip_init - else: - init_method = default_init - self.layer_id = layer_id - self.activation_func = activation_func - - # Project to 4h. - self.hidden_size = hidden_size - if inner_hidden_size is None: - inner_hidden_size = 4 * hidden_size - self.inner_hidden_size = inner_hidden_size - self.dense_h_to_4h = init_method( - torch.nn.Linear, - self.hidden_size, - self.inner_hidden_size, - bias=bias, - dtype=params_dtype, - ) - # Project back to h. - self.dense_4h_to_h = init_method( - torch.nn.Linear, - self.inner_hidden_size, - self.hidden_size, - bias=bias, - dtype=params_dtype, - ) - - def forward(self, hidden_states): - """ - hidden_states: [seq_len, batch, hidden_size] - """ - - # [seq_len, batch, inner_hidden_size] - intermediate_parallel = self.dense_h_to_4h(hidden_states) - - intermediate_parallel = self.activation_func(intermediate_parallel) - - output = self.dense_4h_to_h(intermediate_parallel) - - return output - - -class GLMBlock(torch.nn.Module): - def __init__( - self, - hidden_size, - num_attention_heads, - layernorm_epsilon, - layer_id, - inner_hidden_size=None, - hidden_size_per_attention_head=None, - layernorm=LayerNorm, - use_bias=True, - params_dtype=torch.float, - num_layers=28, - position_encoding_2d=True, - empty_init=True, - ): - super(GLMBlock, self).__init__() - # Set output layer initialization if not provided. - - self.layer_id = layer_id - - # Layernorm on the input data. - self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon) - - self.position_encoding_2d = position_encoding_2d - - # Self attention. - self.attention = SelfAttention( - hidden_size, - num_attention_heads, - layer_id, - hidden_size_per_attention_head=hidden_size_per_attention_head, - bias=use_bias, - params_dtype=params_dtype, - position_encoding_2d=self.position_encoding_2d, - empty_init=empty_init, - ) - - # Layernorm on the input data. - self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon) - - self.num_layers = num_layers - - # GLU - self.mlp = GLU( - hidden_size, - inner_hidden_size=inner_hidden_size, - bias=use_bias, - layer_id=layer_id, - params_dtype=params_dtype, - empty_init=empty_init, - ) - - def forward( - self, - hidden_states: torch.Tensor, - position_ids, - attention_mask: torch.Tensor, - layer_id, - layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, - use_cache: bool = False, - output_attentions: bool = False, - ): - """ - hidden_states: [seq_len, batch, hidden_size] - attention_mask: [(1, 1), seq_len, seq_len] - """ - - # Layer norm at the begining of the transformer layer. - # [seq_len, batch, hidden_size] - attention_input = self.input_layernorm(hidden_states) - - # Self attention. - attention_outputs = self.attention( - attention_input, - position_ids, - attention_mask=attention_mask, - layer_id=layer_id, - layer_past=layer_past, - use_cache=use_cache, - output_attentions=output_attentions, - ) - - attention_output = attention_outputs[0] - - outputs = attention_outputs[1:] - - # Residual connection. - alpha = (2 * self.num_layers) ** 0.5 - hidden_states = attention_input * alpha + attention_output - - mlp_input = self.post_attention_layernorm(hidden_states) - - # MLP. - mlp_output = self.mlp(mlp_input) - - # Second residual connection. - output = mlp_input * alpha + mlp_output - - if use_cache: - outputs = (output,) + outputs - else: - outputs = (output,) + outputs[1:] - - return outputs # hidden_states, present, attentions - - -class ChatGLMPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and - a simple interface for downloading and loading pretrained models. - """ - - is_parallelizable = False - supports_gradient_checkpointing = True - config_class = ChatGLMConfig - base_model_prefix = "transformer" - _no_split_modules = ["GLMBlock"] - - def __init__(self, *inputs, **kwargs): - super().__init__(*inputs, **kwargs) - - def _init_weights(self, module: nn.Module): - """Initialize the weights.""" - return - - def get_masks(self, input_ids, device): - batch_size, seq_length = input_ids.shape - context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids] - attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device) - attention_mask.tril_() - for i, context_length in enumerate(context_lengths): - attention_mask[i, :, :context_length] = 1 - attention_mask.unsqueeze_(1) - attention_mask = (attention_mask < 0.5).bool() - - return attention_mask - - def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None): - batch_size, seq_length = input_ids.shape - if use_gmasks is None: - use_gmasks = [False] * batch_size - context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids] - if self.position_encoding_2d: - position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) - for i, context_length in enumerate(context_lengths): - position_ids[i, context_length:] = mask_positions[i] - block_position_ids = [ - torch.cat( - ( - torch.zeros(context_length, dtype=torch.long, device=device), - torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1, - ) - ) - for context_length in context_lengths - ] - block_position_ids = torch.stack(block_position_ids, dim=0) - position_ids = torch.stack((position_ids, block_position_ids), dim=1) - else: - position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) - for i, context_length in enumerate(context_lengths): - if not use_gmasks[i]: - position_ids[i, context_length:] = mask_positions[i] - - return position_ids - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, ChatGLMModel): - module.gradient_checkpointing = value - - -CHATGLM_6B_START_DOCSTRING = r""" - This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general - usage and behavior. - - Parameters: - config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model. - Initializing with a config file does not load the weights associated with the model, only the configuration. - Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - -CHATGLM_6B_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `({0})`): - Indices of input sequence tokens in the vocabulary. - - Indices can be obtained using [`ChatGLM6BTokenizer`]. - See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): - Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - - - 0 corresponds to a *sentence A* token, - - 1 corresponds to a *sentence B* token. - - [What are token type IDs?](../glossary#token-type-ids) - position_ids (`torch.LongTensor` of shape `({0})`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. - Selected in the range `[0, config.max_position_embeddings - 1]`. - - [What are position IDs?](../glossary#position-ids) - head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. - This is useful if you want more control over how to convert *input_ids* indices into associated vectors - than the model's internal embedding lookup matrix. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.", - CHATGLM_6B_START_DOCSTRING, -) -class ChatGLMModel(ChatGLMPreTrainedModel): - """ - - The model can behave as an encoder (with only self-attention) as well - as a decoder, in which case a layer of cross-attention is added between - the self-attention layers, following the architecture described in [Attention is - all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, - Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. - - To behave as an decoder the model needs to be initialized with the - `is_decoder` argument of the configuration set to `True`. - To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` - argument and `add_cross_attention` set to `True`; an - `encoder_hidden_states` is then expected as an input to the forward pass. - """ - - def __init__(self, config: ChatGLMConfig, empty_init=True): - super().__init__(config) - if empty_init: - init_method = skip_init - else: - init_method = default_init - # recording parameters - self.max_sequence_length = config.max_sequence_length - self.hidden_size = config.hidden_size - self.params_dtype = torch.half - self.num_attention_heads = config.num_attention_heads - self.vocab_size = config.vocab_size - self.num_layers = config.num_layers - self.layernorm_epsilon = config.layernorm_epsilon - self.inner_hidden_size = config.inner_hidden_size - self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads - self.position_encoding_2d = config.position_encoding_2d - self.pre_seq_len = config.pre_seq_len - self.prefix_projection = config.prefix_projection - - self.word_embeddings = init_method( - torch.nn.Embedding, num_embeddings=self.vocab_size, embedding_dim=self.hidden_size, dtype=self.params_dtype - ) - self.gradient_checkpointing = False - - def get_layer(layer_id): - return GLMBlock( - self.hidden_size, - self.num_attention_heads, - self.layernorm_epsilon, - layer_id, - inner_hidden_size=self.inner_hidden_size, - hidden_size_per_attention_head=self.hidden_size_per_attention_head, - layernorm=LayerNorm, - use_bias=True, - params_dtype=self.params_dtype, - position_encoding_2d=self.position_encoding_2d, - empty_init=empty_init, - ) - - self.layers = torch.nn.ModuleList([get_layer(layer_id) for layer_id in range(self.num_layers)]) - - # Final layer norm before output. - self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon) - - if self.pre_seq_len is not None: - for param in self.parameters(): - param.requires_grad = False - self.prefix_tokens = torch.arange(self.pre_seq_len).long() - self.prefix_encoder = PrefixEncoder(config) - self.dropout = torch.nn.Dropout(0.1) - - # total_params = sum(p.numel() for p in self.parameters()) - # trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad) - # print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params)) - - def get_input_embeddings(self): - return self.word_embeddings - - def set_input_embeddings(self, new_embeddings: torch.Tensor): - self.word_embeddings = new_embeddings - - def get_prompt(self, batch_size, device, dtype=torch.half): - prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) - past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) - past_key_values = past_key_values.view( - batch_size, - self.pre_seq_len, - self.num_layers * 2, - self.num_attention_heads, - self.hidden_size // self.num_attention_heads, - ) - # seq_len, b, nh, hidden_size - past_key_values = self.dropout(past_key_values) - past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) - # past_key_values = [(v[0], v[1]) for v in past_key_values] - return past_key_values - - @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length")) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=BaseModelOutputWithPastAndCrossAttentions, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - position_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, - inputs_embeds: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") - elif input_ids is not None: - batch_size, seq_length = input_ids.shape[:2] - elif inputs_embeds is not None: - batch_size, seq_length = inputs_embeds.shape[:2] - else: - raise ValueError("You have to specify either input_ids or inputs_embeds") - - if inputs_embeds is None: - inputs_embeds = self.word_embeddings(input_ids) - - if past_key_values is None: - if self.pre_seq_len is not None: - past_key_values = self.get_prompt( - batch_size=input_ids.shape[0], device=input_ids.device, dtype=inputs_embeds.dtype - ) - else: - past_key_values = tuple([None] * len(self.layers)) - - if attention_mask is None: - attention_mask = self.get_masks(input_ids, device=input_ids.device) - - if position_ids is None: - MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id - seqs = input_ids.tolist() - - mask_positions, use_gmasks = [], [] - for seq in seqs: - mask_token = gMASK if gMASK in seq else MASK - use_gmask = mask_token == gMASK - mask_positions.append(seq.index(mask_token)) - use_gmasks.append(use_gmask) - - position_ids = self.get_position_ids( - input_ids, mask_positions=mask_positions, device=input_ids.device, use_gmasks=use_gmasks - ) - - if self.pre_seq_len is not None and attention_mask is not None: - prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to( - attention_mask.device - ) - prefix_attention_mask = (prefix_attention_mask < 0.5).bool() - attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3) - - # [seq_len, batch, hidden_size] - hidden_states = inputs_embeds.transpose(0, 1) - - presents = () if use_cache else None - all_self_attentions = () if output_attentions else None - all_hidden_states = () if output_hidden_states else None - - if attention_mask is None: - attention_mask = torch.zeros(1, 1, device=input_ids.device).bool() - else: - attention_mask = attention_mask.to(hidden_states.device) - - for i, layer in enumerate(self.layers): - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - layer_past = past_key_values[i] - - if self.gradient_checkpointing and self.training: - layer_ret = torch.utils.checkpoint.checkpoint( - layer, - hidden_states, - position_ids, - attention_mask, - torch.tensor(i), - layer_past, - use_cache, - output_attentions, - ) - else: - layer_ret = layer( - hidden_states, - position_ids=position_ids, - attention_mask=attention_mask, - layer_id=torch.tensor(i), - layer_past=layer_past, - use_cache=use_cache, - output_attentions=output_attentions, - ) - - hidden_states = layer_ret[0] - - if use_cache: - presents = presents + (layer_ret[1],) - - if output_attentions: - all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],) - - # Final layer norm. - hidden_states = self.final_layernorm(hidden_states) - - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - if not return_dict: - return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) - - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=presents, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - ) - - -class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): - def __init__(self, config: ChatGLMConfig, empty_init=True): - super().__init__(config) - if empty_init: - init_method = skip_init - else: - init_method = default_init - - # self.hidden_size = config.hidden_size - # self.params_dtype = torch.half - # self.vocab_size = config.vocab_size - self.max_sequence_length = config.max_sequence_length - - self.position_encoding_2d = config.position_encoding_2d - - self.transformer = ChatGLMModel(config, empty_init=empty_init) - - self.lm_head = init_method(nn.Linear, config.hidden_size, config.vocab_size, bias=False, dtype=torch.half) - - self.config = config - - self.quantized = False - - if self.config.quantization_bit: - self.quantize(self.config.quantization_bit, empty_init=True) - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def _update_model_kwargs_for_generation( - self, - outputs: ModelOutput, - model_kwargs: Dict[str, Any], - is_encoder_decoder: bool = False, - standardize_cache_format: bool = False, - ) -> Dict[str, Any]: - # update past_key_values - model_kwargs["past_key_values"] = self._extract_past_from_model_output( - outputs, standardize_cache_format=standardize_cache_format - ) - - # update attention mask - if "attention_mask" in model_kwargs: - attention_mask = model_kwargs["attention_mask"] - if attention_mask is not None and attention_mask.dtype == torch.bool: - attention_mask = torch.cat( - [attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3 - ) - new_attention_mask = attention_mask[:, :, -1:].clone() - new_attention_mask[..., -1] = False - model_kwargs["attention_mask"] = torch.cat([attention_mask, new_attention_mask], dim=2) - - # update position ids - if "position_ids" in model_kwargs: - position_ids = model_kwargs["position_ids"] - new_position_id = position_ids[..., -1:].clone() - new_position_id[:, 1, :] += 1 - model_kwargs["position_ids"] = torch.cat([position_ids, new_position_id], dim=-1) - - return model_kwargs - - def prepare_inputs_for_generation( - self, - input_ids: torch.LongTensor, - past: Optional[torch.Tensor] = None, - past_key_values: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - **kwargs, - ) -> dict: - batch_size, seq_length = input_ids.shape - MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id - seqs = input_ids.tolist() - mask_positions, use_gmasks = [], [] - for seq in seqs: - mask_token = gMASK if gMASK in seq else MASK - use_gmask = mask_token == gMASK - mask_positions.append(seq.index(mask_token)) - use_gmasks.append(use_gmask) - - # only last token for input_ids if past is not None - if past is not None or past_key_values is not None: - last_token = input_ids[:, -1].unsqueeze(-1) - if attention_mask is not None and attention_mask.dtype == torch.bool: - attention_mask = attention_mask[:, :, -1:] - else: - attention_mask = None - if position_ids is not None: - position_ids = position_ids[..., -1:] - else: - context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs] - if self.position_encoding_2d: - position_ids = torch.tensor( - [ - [mask_position, seq_length - context_length] - for mask_position, context_length in zip(mask_positions, context_lengths) - ], - dtype=torch.long, - device=input_ids.device, - ).unsqueeze(-1) - else: - position_ids = torch.tensor( - [mask_position for mask_position in mask_positions], dtype=torch.long, device=input_ids.device - ).unsqueeze(-1) - - if past is None: - past = past_key_values - return { - "input_ids": last_token, - "past_key_values": past, - "position_ids": position_ids, - "attention_mask": attention_mask, - } - else: - if attention_mask is not None and attention_mask.dtype != torch.bool: - logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool") - attention_mask = None - if attention_mask is None: - attention_mask = self.get_masks(input_ids, device=input_ids.device) - if position_ids is None: - position_ids = self.get_position_ids( - input_ids, device=input_ids.device, mask_positions=mask_positions, use_gmasks=use_gmasks - ) - - return { - "input_ids": input_ids, - "past_key_values": past, - "position_ids": position_ids, - "attention_mask": attention_mask, - } - - def forward( - self, - input_ids: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[Tuple[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.Tensor] = None, - labels: Optional[torch.Tensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ): - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.transformer( - input_ids=input_ids, - position_ids=position_ids, - attention_mask=attention_mask, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = transformer_outputs[0] - - lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous() - - loss = None - if labels is not None: - lm_logits = lm_logits.to(torch.float32) - - # Shift so that tokens < n predict n - shift_logits = lm_logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss(ignore_index=-100) - loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) - - lm_logits = lm_logits.to(hidden_states.dtype) - loss = loss.to(hidden_states.dtype) - - if not return_dict: - output = (lm_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=lm_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - @staticmethod - def _reorder_cache( - past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor - ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: - """ - This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or - [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct - beam_idx at every generation step. - - Output shares the same memory storage as `past`. - """ - return tuple( - ( - layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), - layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), - ) - for layer_past in past - ) - - def process_response(self, response): - response = response.strip() - response = response.replace("[[训练时间]]", "2023年") - punkts = [ - [",", ","], - ["!", "!"], - [":", ":"], - [";", ";"], - ["\?", "?"], - ] - for item in punkts: - response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response) - response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response) - return response - - @torch.no_grad() - def chat( - self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = None, - max_length: int = 2048, - num_beams=1, - do_sample=True, - top_p=0.7, - temperature=0.95, - logits_processor=None, - **kwargs, - ): - if history is None: - history = [] - if logits_processor is None: - logits_processor = LogitsProcessorList() - logits_processor.append(InvalidScoreLogitsProcessor()) - gen_kwargs = { - "max_length": max_length, - "num_beams": num_beams, - "do_sample": do_sample, - "top_p": top_p, - "temperature": temperature, - "logits_processor": logits_processor, - **kwargs, - } - if not history: - prompt = query - else: - prompt = "" - for i, (old_query, response) in enumerate(history): - prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response) - prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) - inputs = tokenizer([prompt], return_tensors="pt") - inputs = inputs.to(self.device) - outputs = self.generate(**inputs, **gen_kwargs) - outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) :] - response = tokenizer.decode(outputs) - response = self.process_response(response) - history = history + [(query, response)] - return response, history - - @torch.no_grad() - def stream_chat( - self, - tokenizer, - query: str, - history: List[Tuple[str, str]] = None, - max_length: int = 2048, - do_sample=True, - top_p=0.7, - temperature=0.95, - logits_processor=None, - **kwargs, - ): - if history is None: - history = [] - if logits_processor is None: - logits_processor = LogitsProcessorList() - logits_processor.append(InvalidScoreLogitsProcessor()) - gen_kwargs = { - "max_length": max_length, - "do_sample": do_sample, - "top_p": top_p, - "temperature": temperature, - "logits_processor": logits_processor, - **kwargs, - } - if not history: - prompt = query - else: - prompt = "" - for i, (old_query, response) in enumerate(history): - prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response) - prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) - inputs = tokenizer([prompt], return_tensors="pt") - inputs = inputs.to(self.device) - for outputs in self.stream_generate(**inputs, **gen_kwargs): - outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) :] - response = tokenizer.decode(outputs) - response = self.process_response(response) - new_history = history + [(query, response)] - yield response, new_history - - @torch.no_grad() - def stream_generate( - self, - input_ids, - generation_config: Optional[GenerationConfig] = None, - logits_processor: Optional[LogitsProcessorList] = None, - stopping_criteria: Optional[StoppingCriteriaList] = None, - prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, - **kwargs, - ): - batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] - - if generation_config is None: - generation_config = self.generation_config - generation_config = copy.deepcopy(generation_config) - model_kwargs = generation_config.update(**kwargs) - bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id - - if isinstance(eos_token_id, int): - eos_token_id = [eos_token_id] - - has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None - if has_default_max_length and generation_config.max_new_tokens is None: - warnings.warn( - f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " - "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" - " recommend using `max_new_tokens` to control the maximum length of the generation.", - UserWarning, - ) - elif generation_config.max_new_tokens is not None: - generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length - if not has_default_max_length: - logger.warn( - f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" - f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " - "Please refer to the documentation for more information. " - "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", - UserWarning, - ) - - if input_ids_seq_length >= generation_config.max_length: - input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" - logger.warning( - f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" - f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" - " increasing `max_new_tokens`." - ) - - # 2. Set generation parameters if not already defined - logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() - stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() - - logits_processor = self._get_logits_processor( - generation_config=generation_config, - input_ids_seq_length=input_ids_seq_length, - encoder_input_ids=input_ids, - prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, - logits_processor=logits_processor, - ) - - stopping_criteria = self._get_stopping_criteria( - generation_config=generation_config, stopping_criteria=stopping_criteria - ) - logits_warper = self._get_logits_warper(generation_config) - - unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) - scores = None - while True: - model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) - # forward pass to get next token - outputs = self( - **model_inputs, - return_dict=True, - output_attentions=False, - output_hidden_states=False, - ) - - next_token_logits = outputs.logits[:, -1, :] - - # pre-process distribution - next_token_scores = logits_processor(input_ids, next_token_logits) - next_token_scores = logits_warper(input_ids, next_token_scores) - - # sample - probs = nn.functional.softmax(next_token_scores, dim=-1) - if generation_config.do_sample: - next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) - else: - next_tokens = torch.argmax(probs, dim=-1) - - # update generated ids, model inputs, and length for next step - input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) - model_kwargs = self._update_model_kwargs_for_generation( - outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder - ) - unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long()) - - # stop when each sentence is finished, or if we exceed the maximum length - if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): - break - yield input_ids - - def quantize(self, bits: int, empty_init=False, **kwargs): - if bits == 0: - return - - from .quantization import quantize - - if self.quantized: - logger.info("Already quantized.") - return self - - self.quantized = True - - self.config.quantization_bit = bits - - self.transformer = quantize(self.transformer, bits, empty_init=empty_init, **kwargs) - return self diff --git a/applications/Chat/coati/models/generation.py b/applications/Chat/coati/models/generation.py deleted file mode 100644 index 4ab0cdc8a..000000000 --- a/applications/Chat/coati/models/generation.py +++ /dev/null @@ -1,152 +0,0 @@ -from typing import Any, Callable, Optional - -import torch -import torch.distributed as dist -from transformers import PreTrainedTokenizer - -from .base import Actor - -try: - from transformers.generation_logits_process import ( - LogitsProcessorList, - TemperatureLogitsWarper, - TopKLogitsWarper, - TopPLogitsWarper, - ) -except ImportError: - from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper - - -def _prepare_logits_processor( - top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None -) -> LogitsProcessorList: - processor_list = LogitsProcessorList() - if temperature is not None and temperature != 1.0: - processor_list.append(TemperatureLogitsWarper(temperature)) - if top_k is not None and top_k != 0: - processor_list.append(TopKLogitsWarper(top_k)) - if top_p is not None and top_p < 1.0: - processor_list.append(TopPLogitsWarper(top_p)) - return processor_list - - -def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool: - if dist.is_initialized() and dist.get_world_size() > 1: - # consider DP - unfinished_sequences = unfinished_sequences.clone() - dist.all_reduce(unfinished_sequences) - return unfinished_sequences.max() == 0 - - -def _sample( - model: Actor, - input_ids: torch.Tensor, - max_length: int, - early_stopping: bool = False, - eos_token_id: Optional[int] = None, - pad_token_id: Optional[int] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - temperature: Optional[float] = None, - prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, - update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, - **model_kwargs, -) -> torch.Tensor: - if input_ids.size(1) >= max_length: - return input_ids - - logits_processor = _prepare_logits_processor(top_k, top_p, temperature) - unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) - - for _ in range(input_ids.size(1), max_length): - model_inputs = ( - prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {"input_ids": input_ids} - ) - outputs = model(**model_inputs) - - # NOTE: this is correct only in left padding mode - next_token_logits = outputs["logits"][:, -1, :] - next_token_logits = logits_processor(input_ids, next_token_logits) - # sample - probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float) - next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) - - # finished sentences should have their next token be a padding token - if eos_token_id is not None: - assert pad_token_id is not None, "If `eos_token_id` is defined, make sure that `pad_token_id` is defined." - next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) - - # update generated ids, model inputs for next step - input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) - if update_model_kwargs_fn is not None: - model_kwargs = update_model_kwargs_fn(outputs, model_kwargs) - - # if eos_token was found in one sentence, set sentence to finished - if eos_token_id is not None: - unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long()) - - # stop when each sentence is finished if early_stopping=True - if early_stopping and _is_sequence_finished(unfinished_sequences): - break - - return input_ids - - -@torch.no_grad() -def generate( - model: Actor, - input_ids: torch.Tensor, - tokenizer: PreTrainedTokenizer, - max_length: int, - num_beams: int = 1, - do_sample: bool = True, - early_stopping: bool = False, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - temperature: Optional[float] = None, - prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, - update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, - **model_kwargs, -) -> torch.Tensor: - """Generate token sequence. The returned sequence is input_ids + generated_tokens. - - Args: - model (nn.Module): model - input_ids (torch.Tensor): input sequence - max_length (int): max length of the returned sequence - num_beams (int, optional): number of beams. Defaults to 1. - do_sample (bool, optional): whether to do sample. Defaults to True. - early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False. - top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None. - top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None. - temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None. - prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None. - update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None. - """ - assert tokenizer.padding_side == "left", "Current generation only supports left padding." - is_greedy_gen_mode = (num_beams == 1) and do_sample is False - is_sample_gen_mode = (num_beams == 1) and do_sample is True - is_beam_gen_mode = (num_beams > 1) and do_sample is False - if is_greedy_gen_mode: - # run greedy search - raise NotImplementedError - elif is_sample_gen_mode: - # run sample - return _sample( - model, - input_ids, - max_length, - early_stopping=early_stopping, - eos_token_id=tokenizer.eos_token_id, - pad_token_id=tokenizer.pad_token_id, - top_k=top_k, - top_p=top_p, - temperature=temperature, - prepare_inputs_fn=prepare_inputs_fn, - update_model_kwargs_fn=update_model_kwargs_fn, - **model_kwargs, - ) - elif is_beam_gen_mode: - raise NotImplementedError - else: - raise ValueError("Unsupported generation mode") diff --git a/applications/Chat/coati/models/gpt/__init__.py b/applications/Chat/coati/models/gpt/__init__.py deleted file mode 100644 index 823cf4a75..000000000 --- a/applications/Chat/coati/models/gpt/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .gpt_actor import GPTActor -from .gpt_critic import GPTCritic -from .gpt_rm import GPTRM - -__all__ = ["GPTActor", "GPTCritic", "GPTRM"] diff --git a/applications/Chat/coati/models/gpt/gpt_actor.py b/applications/Chat/coati/models/gpt/gpt_actor.py deleted file mode 100644 index a7e4b9bc3..000000000 --- a/applications/Chat/coati/models/gpt/gpt_actor.py +++ /dev/null @@ -1,38 +0,0 @@ -from typing import Optional - -from transformers.models.gpt2.configuration_gpt2 import GPT2Config -from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel - -from ..base import Actor - - -class GPTActor(Actor): - """ - GPT Actor model. - - Args: - pretrained (str): Pretrained model name or path. - config (GPT2Config): Model config. - checkpoint (bool): Enable gradient checkpointing. - lora_rank (int): Rank of the LoRa layer. - lora_train_bias (str): Bias training strategy for the LoRa layer. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[GPT2Config] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = "none", - **kwargs, - ) -> None: - if pretrained is not None: - model = GPT2LMHeadModel.from_pretrained(pretrained) - elif config is not None: - model = GPT2LMHeadModel(config) - else: - model = GPT2LMHeadModel(GPT2Config()) - if checkpoint: - model.gradient_checkpointing_enable() - super().__init__(model, lora_rank, lora_train_bias, **kwargs) diff --git a/applications/Chat/coati/models/gpt/gpt_critic.py b/applications/Chat/coati/models/gpt/gpt_critic.py deleted file mode 100644 index 22ab36dea..000000000 --- a/applications/Chat/coati/models/gpt/gpt_critic.py +++ /dev/null @@ -1,37 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers.models.gpt2.configuration_gpt2 import GPT2Config -from transformers.models.gpt2.modeling_gpt2 import GPT2Model - -from ..base import Critic - - -class GPTCritic(Critic): - """ - GPT Critic model. - - Args: - pretrained (str): Pretrained model name or path. - config (GPT2Config): Model config. - lora_rank (int): Rank of the LO-RA decomposition. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[GPT2Config] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - **kwargs, - ) -> None: - if pretrained is not None: - model = GPT2Model.from_pretrained(pretrained) - elif config is not None: - model = GPT2Model(config) - else: - model = GPT2Model(GPT2Config()) - - value_head = nn.Linear(model.config.n_embd, 1) - super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs) diff --git a/applications/Chat/coati/models/gpt/gpt_rm.py b/applications/Chat/coati/models/gpt/gpt_rm.py deleted file mode 100644 index 8edfc4008..000000000 --- a/applications/Chat/coati/models/gpt/gpt_rm.py +++ /dev/null @@ -1,37 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers.models.gpt2.configuration_gpt2 import GPT2Config -from transformers.models.gpt2.modeling_gpt2 import GPT2Model - -from ..base import RewardModel - - -class GPTRM(RewardModel): - """ - GPT Reward model. - - Args: - pretrained (str): Pretrained model name or path. - config (GPT2Config): Model config. - lora_rank (int): Rank of the low-rank approximation. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[GPT2Config] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = GPT2Model.from_pretrained(pretrained) - elif config is not None: - model = GPT2Model(config) - else: - model = GPT2Model(GPT2Config()) - - value_head = nn.Linear(model.config.n_embd, 1) - value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1)) - super().__init__(model, value_head, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/llama/__init__.py b/applications/Chat/coati/models/llama/__init__.py deleted file mode 100644 index c87d73253..000000000 --- a/applications/Chat/coati/models/llama/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .llama_actor import LlamaActor -from .llama_critic import LlamaCritic -from .llama_rm import LlamaRM - -__all__ = ["LlamaActor", "LlamaCritic", "LlamaRM"] diff --git a/applications/Chat/coati/models/llama/llama_actor.py b/applications/Chat/coati/models/llama/llama_actor.py deleted file mode 100644 index f1d940683..000000000 --- a/applications/Chat/coati/models/llama/llama_actor.py +++ /dev/null @@ -1,38 +0,0 @@ -from typing import Optional - -from transformers import LlamaConfig, LlamaForCausalLM - -from ..base import Actor - - -class LlamaActor(Actor): - """ - Llama Actor model. - - Args: - pretrained (str): Pretrained model name or path. - config (LlamaConfig): Model config. - checkpoint (bool): Enable gradient checkpointing. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[LlamaConfig] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = LlamaForCausalLM.from_pretrained(pretrained) - elif config is not None: - model = LlamaForCausalLM(config) - else: - model = LlamaForCausalLM(LlamaConfig()) - - if checkpoint: - model.gradient_checkpointing_enable() - - super().__init__(model, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/llama/llama_critic.py b/applications/Chat/coati/models/llama/llama_critic.py deleted file mode 100644 index 000dce17c..000000000 --- a/applications/Chat/coati/models/llama/llama_critic.py +++ /dev/null @@ -1,36 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers import LlamaConfig, LlamaModel - -from ..base import Critic - - -class LlamaCritic(Critic): - """ - Llama Critic model. - - Args: - pretrained (str): Pretrained model name or path. - config (LlamaConfig): Model config. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[LlamaConfig] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - **kwargs, - ) -> None: - if pretrained is not None: - model = LlamaModel.from_pretrained(pretrained) - elif config is not None: - model = LlamaModel(config) - else: - model = LlamaModel(LlamaConfig()) - - value_head = nn.Linear(model.config.hidden_size, 1) - super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs) diff --git a/applications/Chat/coati/models/llama/llama_rm.py b/applications/Chat/coati/models/llama/llama_rm.py deleted file mode 100644 index 43bc9e638..000000000 --- a/applications/Chat/coati/models/llama/llama_rm.py +++ /dev/null @@ -1,37 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers import LlamaConfig, LlamaModel - -from ..base import RewardModel - - -class LlamaRM(RewardModel): - """ - Llama Reward model. - - Args: - pretrained (str): Pretrained model name or path. - config (LlamaConfig): Model config. - lora_rank (int): LoRA rank. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[LlamaConfig] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = LlamaModel.from_pretrained(pretrained) - elif config is not None: - model = LlamaModel(config) - else: - model = LlamaModel(LlamaConfig()) - - value_head = nn.Linear(model.config.hidden_size, 1) - value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1)) - - super().__init__(model, value_head, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/loss.py b/applications/Chat/coati/models/loss.py deleted file mode 100644 index 687bd0f7b..000000000 --- a/applications/Chat/coati/models/loss.py +++ /dev/null @@ -1,97 +0,0 @@ -from typing import Optional - -import torch -import torch.nn as nn - -from .utils import masked_mean - - -class GPTLMLoss(nn.Module): - """ - GPT Language Model Loss - """ - - def __init__(self): - super().__init__() - # NOTE: default ignore_index is -100, which is equal to IGNORE_INDEX in sft_dataset.py - self.loss = nn.CrossEntropyLoss() - - def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) - - -class PolicyLoss(nn.Module): - """ - Policy Loss for PPO - """ - - def __init__(self, clip_eps: float = 0.2) -> None: - super().__init__() - self.clip_eps = clip_eps - - def forward( - self, - log_probs: torch.Tensor, - old_log_probs: torch.Tensor, - advantages: torch.Tensor, - action_mask: Optional[torch.Tensor] = None, - ) -> torch.Tensor: - ratio = (log_probs - old_log_probs).exp() - surr1 = ratio * advantages - surr2 = ratio.clamp(1 - self.clip_eps, 1 + self.clip_eps) * advantages - loss = -torch.min(surr1, surr2) - if action_mask is not None: - loss = masked_mean(loss, action_mask) - loss = loss.mean() - return loss - - -class ValueLoss(nn.Module): - """ - Value Loss for PPO - """ - - def __init__(self, clip_eps: float = 0.4) -> None: - super().__init__() - self.clip_eps = clip_eps - - def forward( - self, - values: torch.Tensor, - old_values: torch.Tensor, - reward: torch.Tensor, - action_mask: Optional[torch.Tensor] = None, - ) -> torch.Tensor: - values_clipped = old_values + (values - old_values).clamp(-self.clip_eps, self.clip_eps) - surr1 = (values_clipped - reward) ** 2 - surr2 = (values - reward) ** 2 - loss = torch.max(surr1, surr2) - loss = loss.mean() - return 0.5 * loss - - -class LogSigLoss(nn.Module): - """ - Pairwise Loss for Reward Model - Details: https://arxiv.org/abs/2203.02155 - """ - - def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor: - probs = torch.sigmoid(chosen_reward - reject_reward) - log_probs = torch.log(probs) - loss = -log_probs.mean() - return loss - - -class LogExpLoss(nn.Module): - """ - Pairwise Loss for Reward Model - Details: https://arxiv.org/abs/2204.05862 - """ - - def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor: - loss = torch.log(1 + torch.exp(reject_reward - chosen_reward)).mean() - return loss diff --git a/applications/Chat/coati/models/opt/__init__.py b/applications/Chat/coati/models/opt/__init__.py deleted file mode 100644 index e37d6e45c..000000000 --- a/applications/Chat/coati/models/opt/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .opt_actor import OPTActor -from .opt_critic import OPTCritic -from .opt_rm import OPTRM - -__all__ = ["OPTActor", "OPTCritic", "OPTRM"] diff --git a/applications/Chat/coati/models/opt/opt_actor.py b/applications/Chat/coati/models/opt/opt_actor.py deleted file mode 100644 index cd8908e13..000000000 --- a/applications/Chat/coati/models/opt/opt_actor.py +++ /dev/null @@ -1,37 +0,0 @@ -from typing import Optional - -from transformers.models.opt.configuration_opt import OPTConfig -from transformers.models.opt.modeling_opt import OPTForCausalLM - -from ..base import Actor - - -class OPTActor(Actor): - """ - OPT Actor model. - - Args: - pretrained (str): Pretrained model name or path. - config (OPTConfig): Model config. - checkpoint (bool): Enable gradient checkpointing. - lora_rank (int): Rank of the low-rank approximation. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[OPTConfig] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = OPTForCausalLM.from_pretrained(pretrained) - elif config is not None: - model = OPTForCausalLM(config) - else: - model = OPTForCausalLM(OPTConfig()) - if checkpoint: - model.gradient_checkpointing_enable() - super().__init__(model, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/opt/opt_critic.py b/applications/Chat/coati/models/opt/opt_critic.py deleted file mode 100644 index f37d28812..000000000 --- a/applications/Chat/coati/models/opt/opt_critic.py +++ /dev/null @@ -1,37 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers.models.opt.configuration_opt import OPTConfig -from transformers.models.opt.modeling_opt import OPTModel - -from ..base import Critic - - -class OPTCritic(Critic): - """ - OPT Critic model. - - Args: - pretrained (str): Pretrained model name or path. - config (OPTConfig): Model config. - lora_rank (int): Rank of the low-rank approximation. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[OPTConfig] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - **kwargs, - ) -> None: - if pretrained is not None: - model = OPTModel.from_pretrained(pretrained) - elif config is not None: - model = OPTModel(config) - else: - model = OPTModel(OPTConfig()) - - value_head = nn.Linear(model.config.word_embed_proj_dim, 1) - super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs) diff --git a/applications/Chat/coati/models/opt/opt_rm.py b/applications/Chat/coati/models/opt/opt_rm.py deleted file mode 100644 index 893708344..000000000 --- a/applications/Chat/coati/models/opt/opt_rm.py +++ /dev/null @@ -1,36 +0,0 @@ -from typing import Optional - -import torch.nn as nn -from transformers import OPTConfig, OPTModel - -from ..base import RewardModel - - -class OPTRM(RewardModel): - """ - OPT Reward model. - - Args: - pretrained (str): Pretrained model name or path. - config (OPTConfig): Model config. - lora_rank (int): Rank of the low-rank approximation. - lora_train_bias (str): LoRA bias training mode. - """ - - def __init__( - self, - pretrained: Optional[str] = None, - config: Optional[OPTConfig] = None, - lora_rank: int = 0, - lora_train_bias: str = "none", - ) -> None: - if pretrained is not None: - model = OPTModel.from_pretrained(pretrained) - elif config is not None: - model = OPTModel(config) - else: - model = OPTModel(OPTConfig()) - - value_head = nn.Linear(model.config.word_embed_proj_dim, 1) - value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.word_embed_proj_dim + 1)) - super().__init__(model, value_head, lora_rank, lora_train_bias) diff --git a/applications/Chat/coati/models/utils.py b/applications/Chat/coati/models/utils.py deleted file mode 100644 index 1aaef1662..000000000 --- a/applications/Chat/coati/models/utils.py +++ /dev/null @@ -1,69 +0,0 @@ -from typing import Optional, Union - -import torch -import torch.nn.functional as F - - -def _compute_approx_kl( - log_probs: torch.Tensor, log_probs_base: torch.Tensor, action_mask: Optional[torch.Tensor] = None -) -> torch.Tensor: - """ - Compute the approximate KL divergence between two distributions. - Schulman blog: http://joschu.net/blog/kl-approx.html - - Args: - log_probs: Log probabilities of the new distribution. - log_probs_base: Log probabilities of the base distribution. - action_mask: Mask for actions. - """ - - log_ratio = log_probs_base - log_probs - approx_kl = (log_ratio.exp() - 1) - log_ratio - if action_mask is not None: - approx_kl = masked_mean(approx_kl, action_mask, dim=1) - return approx_kl - approx_kl = approx_kl.mean(dim=1) - return approx_kl - - -def compute_reward( - r: Union[torch.Tensor, float], - kl_coef: float, - log_probs: torch.Tensor, - log_probs_base: torch.Tensor, - action_mask: Optional[torch.Tensor] = None, -) -> torch.Tensor: - if kl_coef <= 0.0: - return r - kl = _compute_approx_kl(log_probs, log_probs_base, action_mask=action_mask) - reward = r - kl_coef * kl - return reward - - -def _log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: - log_probs = F.log_softmax(logits, dim=-1) - log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) - return log_probs_labels.squeeze(-1) - - -def calc_action_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor: - """Calculate action log probs. - - Args: - output (torch.Tensor): Output tensor of Actor.forward.logits. - sequences (torch.LongTensor): Input sequences. - num_actions (int): Number of actions. - - Returns: - torch.Tensor: Action log probs. - """ - log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) - return log_probs[:, -num_actions:] - - -def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: - tensor = tensor * mask - tensor = tensor.sum(dim=dim) - mask_sum = mask.sum(dim=dim) - mean = tensor / (mask_sum + 1e-8) - return mean diff --git a/applications/Chat/coati/trainer/__init__.py b/applications/Chat/coati/trainer/__init__.py deleted file mode 100644 index 4be5d27f9..000000000 --- a/applications/Chat/coati/trainer/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -from .base import OnPolicyTrainer, SLTrainer -from .ppo import PPOTrainer -from .rm import RewardModelTrainer -from .sft import SFTTrainer - -__all__ = ["SLTrainer", "OnPolicyTrainer", "RewardModelTrainer", "SFTTrainer", "PPOTrainer"] diff --git a/applications/Chat/coati/trainer/callbacks/__init__.py b/applications/Chat/coati/trainer/callbacks/__init__.py deleted file mode 100644 index 29c8c4f00..000000000 --- a/applications/Chat/coati/trainer/callbacks/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .base import Callback -from .performance_evaluator import PerformanceEvaluator -from .save_checkpoint import SaveCheckpoint - -__all__ = ["Callback", "PerformanceEvaluator", "SaveCheckpoint"] diff --git a/applications/Chat/coati/trainer/callbacks/save_checkpoint.py b/applications/Chat/coati/trainer/callbacks/save_checkpoint.py deleted file mode 100644 index 0d70b6c53..000000000 --- a/applications/Chat/coati/trainer/callbacks/save_checkpoint.py +++ /dev/null @@ -1,76 +0,0 @@ -import os - -import torch.distributed as dist -from coati.trainer.strategies import GeminiStrategy, LowLevelZeroStrategy, Strategy -from coati.trainer.utils import is_rank_0 -from torch import nn -from torch.optim import Optimizer - -from .base import Callback - - -class SaveCheckpoint(Callback): - """ - The callback for saving checkpoint for coati. - - Only support saving actor and critic model. - A typical architecture of the saved checkpoint would be: - - checkpoint - - episode_x - - actor.pt - - actor-optim-rank-0.pt - - actor-optim-rank-1.pt - - critic.pt - - critic-optim-rank-0.pt - - critic-optim-rank-1.pt - - ... - - Args: - path(str): the base path you want to save checkpoint, the checkpoint would be saved at `path/checkpoint` - interval(int): the interval episode of saving checkpoint - strategy(Strategy): the strategy used to train - actor(nn.Module): the actor model - critic(nn.Module): the critic model - actor_optim(Optimizer): the optimizer of actor - critic_optim(Optimizer): the optimizer of critic - - """ - - def __init__( - self, - path: str, - interval: int, - strategy: Strategy, - actor: nn.Module = None, - critic: nn.Module = None, - actor_optim: Optimizer = None, - critic_optim: Optimizer = None, - ) -> None: - super().__init__() - self.path = os.path.join(path, "checkpoint") - self.interval = interval - self.strategy = strategy - self.model_dict = {"actor": [actor, actor_optim], "critic": [critic, critic_optim]} - - def on_episode_end(self, episode: int) -> None: - if (episode + 1) % self.interval != 0: - return - base_path = os.path.join(self.path, f"episode_{episode}") - if not os.path.exists(base_path): - os.makedirs(base_path) - - for model in self.model_dict.keys(): - # save model - if self.model_dict[model][0] is None: - # saving only optimizer states is meaningless, so it would be skipped - continue - model_path = os.path.join(base_path, f"{model}.pt") - self.strategy.save_model(model=self.model_dict[model][0], path=model_path, only_rank0=True) - - # save optimizer - if self.model_dict[model][1] is None: - continue - only_rank0 = not isinstance(self.strategy, (LowLevelZeroStrategy, GeminiStrategy)) - rank = 0 if is_rank_0() else dist.get_rank() - optim_path = os.path.join(base_path, f"{model}-optim-rank-{rank}.pt") - self.strategy.save_optimizer(optimizer=self.model_dict[model][1], path=optim_path, only_rank0=only_rank0) diff --git a/applications/Chat/coati/trainer/ppo.py b/applications/Chat/coati/trainer/ppo.py deleted file mode 100644 index 330e4e0e3..000000000 --- a/applications/Chat/coati/trainer/ppo.py +++ /dev/null @@ -1,202 +0,0 @@ -from typing import Dict, List, Optional - -from coati.experience_buffer import NaiveExperienceBuffer -from coati.experience_maker import Experience, NaiveExperienceMaker -from coati.models.base import Actor, Critic, RewardModel, get_base_model -from coati.models.loss import GPTLMLoss, PolicyLoss, ValueLoss -from coati.models.utils import calc_action_log_probs -from torch.optim import Optimizer -from torch.utils.data import DataLoader, DistributedSampler -from tqdm import tqdm -from transformers import PreTrainedTokenizerBase - -from colossalai.accelerator import get_accelerator - -from .base import OnPolicyTrainer -from .callbacks import Callback -from .strategies import GeminiStrategy, Strategy -from .utils import CycledDataLoader, is_rank_0, to_device - - -def _set_default_generate_kwargs(strategy: Strategy, generate_kwargs: dict, actor: Actor) -> Dict: - unwrapped_model = strategy.unwrap_model(actor) - hf_model = get_base_model(unwrapped_model) - new_kwargs = {**generate_kwargs} - # use huggingface models method directly - if "prepare_inputs_fn" not in generate_kwargs and hasattr(hf_model, "prepare_inputs_for_generation"): - new_kwargs["prepare_inputs_fn"] = hf_model.prepare_inputs_for_generation - - if "update_model_kwargs_fn" not in generate_kwargs and hasattr(hf_model, "_update_model_kwargs_for_generation"): - new_kwargs["update_model_kwargs_fn"] = hf_model._update_model_kwargs_for_generation - - return new_kwargs - - -class PPOTrainer(OnPolicyTrainer): - """ - Trainer for PPO algorithm. - - Args: - strategy (Strategy): the strategy to use for training - actor (Actor): the actor model in ppo algorithm - critic (Critic): the critic model in ppo algorithm - reward_model (RewardModel): the reward model in rlhf algorithm to make reward of sentences - initial_model (Actor): the initial model in rlhf algorithm to generate reference logics to limit the update of actor - actor_optim (Optimizer): the optimizer to use for actor model - critic_optim (Optimizer): the optimizer to use for critic model - kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss - train_batch_size (int, defaults to 8): the batch size to use for training - buffer_limit (int, defaults to 0): the max_size limitation of buffer - buffer_cpu_offload (bool, defaults to True): whether to offload buffer to cpu - eps_clip (float, defaults to 0.2): the clip coefficient of policy loss - vf_coef (float, defaults to 1.0): the coefficient of value loss - ptx_coef (float, defaults to 0.9): the coefficient of ptx loss - value_clip (float, defaults to 0.4): the clip coefficient of value loss - sample_buffer (bool, defaults to False): whether to sample from buffer - dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader - offload_inference_models (bool, defaults to True): whether to offload inference models to cpu during training process - callbacks (List[Callback], defaults to []): the callbacks to call during training process - generate_kwargs (dict, optional): the kwargs to use while model generating - """ - - def __init__( - self, - strategy: Strategy, - actor: Actor, - critic: Critic, - reward_model: RewardModel, - initial_model: Actor, - actor_optim: Optimizer, - critic_optim: Optimizer, - tokenizer: PreTrainedTokenizerBase, - kl_coef: float = 0.1, - ptx_coef: float = 0.9, - train_batch_size: int = 8, - buffer_limit: int = 0, - buffer_cpu_offload: bool = True, - eps_clip: float = 0.2, - vf_coef: float = 1.0, - value_clip: float = 0.4, - sample_buffer: bool = False, - dataloader_pin_memory: bool = True, - offload_inference_models: bool = True, - callbacks: List[Callback] = [], - **generate_kwargs, - ) -> None: - if isinstance(strategy, GeminiStrategy): - assert not offload_inference_models, "GeminiPlugin is not compatible with manual model.to('cpu')" - - data_buffer = NaiveExperienceBuffer(train_batch_size, buffer_limit, buffer_cpu_offload) - super().__init__(strategy, data_buffer, sample_buffer, dataloader_pin_memory, callbacks) - - self.generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor) - self.experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, tokenizer, kl_coef) - - self.actor = actor - self.critic = critic - self.tokenizer = tokenizer - - self.actor_loss_fn = PolicyLoss(eps_clip) - self.critic_loss_fn = ValueLoss(value_clip) - self.vf_coef = vf_coef - self.ptx_loss_fn = GPTLMLoss() - self.ptx_coef = ptx_coef - self.actor_optim = actor_optim - self.critic_optim = critic_optim - - self.offload_inference_models = offload_inference_models - self.device = get_accelerator().get_current_device() - - def _before_fit( - self, - prompt_dataloader: DataLoader, - pretrain_dataloader: DataLoader, - log_dir: Optional[str] = None, - use_wandb: bool = False, - ): - """ - Args: - prompt_dataloader (DataLoader): the dataloader to use for prompt data - pretrain_dataloader (DataLoader): the dataloader to use for pretrain data - """ - self.prompt_dataloader = CycledDataLoader(prompt_dataloader) - self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader) - - self.writer = None - if use_wandb and is_rank_0(): - assert log_dir is not None, "log_dir must be provided when use_wandb is True" - import wandb - - wandb.init(project="Coati-ppo", sync_tensorboard=True) - if log_dir is not None and is_rank_0(): - import os - import time - - from torch.utils.tensorboard import SummaryWriter - - log_dir = os.path.join(log_dir, "ppo") - log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) - self.writer = SummaryWriter(log_dir=log_dir) - - def _make_experience(self, collect_step: int) -> Experience: - prompts = self.prompt_dataloader.next() - if self.offload_inference_models: - # TODO(ver217): this may be controlled by strategy if they are prepared by strategy - self.experience_maker.initial_model.to(self.device) - self.experience_maker.reward_model.to(self.device) - assert isinstance(prompts, dict), f'Unsupported input type "{type(prompts)}"' - return self.experience_maker.make_experience(**prompts, **self.generate_kwargs) - - def _training_step(self, experience: Experience): - self.actor.train() - self.critic.train() - # policy loss - num_actions = experience.action_log_probs.size(1) - actor_logits = self.actor(experience.sequences, experience.attention_mask)["logits"] - action_log_probs = calc_action_log_probs(actor_logits, experience.sequences, num_actions) - actor_loss = self.actor_loss_fn( - action_log_probs, experience.action_log_probs, experience.advantages, action_mask=experience.action_mask - ) - actor_loss = (1 - self.ptx_coef) * actor_loss - self.strategy.backward(actor_loss, self.actor, self.actor_optim) - - # ptx loss - if self.ptx_coef != 0: - batch = self.pretrain_dataloader.next() - batch = to_device(batch, self.device) - ptx_log_probs = self.actor(batch["input_ids"], batch["attention_mask"])["logits"] - ptx_loss = self.ptx_coef * self.ptx_loss_fn(ptx_log_probs, batch["labels"]) - self.strategy.backward(ptx_loss, self.actor, self.actor_optim) - - self.strategy.optimizer_step(self.actor_optim) - self.actor_optim.zero_grad() - - # value loss - values = self.critic(experience.sequences, attention_mask=experience.attention_mask) - critic_loss = self.critic_loss_fn(values, experience.values, experience.reward) - critic_loss = critic_loss * self.vf_coef - self.strategy.backward(critic_loss, self.critic, self.critic_optim) - self.strategy.optimizer_step(self.critic_optim) - self.critic_optim.zero_grad() - - def _learn(self, update_step: int): - if self.offload_inference_models: - self.experience_maker.initial_model.to("cpu") - self.experience_maker.reward_model.to("cpu") - - # buffer may be empty at first, we should rebuild at each training - if self.sample_buffer: - experience = self.data_buffer.sample() - self._on_learn_batch_start() - experience.to_device(self.device) - self._training_step(experience) - self._on_learn_batch_end(experience) - else: - if isinstance(self.dataloader.sampler, DistributedSampler): - self.dataloader.sampler.set_epoch(update_step) - pbar = tqdm(self.dataloader, desc=f"Train epoch [{update_step + 1}]", disable=not is_rank_0()) - for experience in pbar: - self._on_learn_batch_start() - experience.to_device(self.device) - self._training_step(experience) - self._on_learn_batch_end(experience) diff --git a/applications/Chat/coati/trainer/rm.py b/applications/Chat/coati/trainer/rm.py deleted file mode 100644 index d7f8c21a5..000000000 --- a/applications/Chat/coati/trainer/rm.py +++ /dev/null @@ -1,123 +0,0 @@ -from typing import Callable, Optional - -import torch -import tqdm -from torch.optim import Optimizer -from torch.optim.lr_scheduler import _LRScheduler -from torch.utils.data import DataLoader - -from .base import SLTrainer -from .strategies import Strategy -from .utils import is_rank_0 - - -class RewardModelTrainer(SLTrainer): - """ - Trainer to use while training reward model. - - Args: - model (torch.nn.Module): the model to train - strategy (Strategy): the strategy to use for training - optim (Optimizer): the optimizer to use for training - lr_scheduler (_LRScheduler): the lr scheduler to use for training - loss_fn (callable): the loss function to use for training - max_epochs (int, defaults to 2): the number of epochs to train - """ - - def __init__( - self, - model, - strategy: Strategy, - optim: Optimizer, - lr_scheduler: _LRScheduler, - loss_fn: Callable, - max_epochs: int = 1, - ) -> None: - super().__init__(strategy, max_epochs, model, optim) - - self.loss_fn = loss_fn - self.scheduler = lr_scheduler - - self.num_train_step = 0 - - def _eval(self, epoch): - if self.eval_dataloader is not None: - self.model.eval() - dist, num_correct, num_samples = 0, 0, 0 - with torch.no_grad(): - for chosen_ids, c_mask, reject_ids, r_mask in self.eval_dataloader: - chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device()) - c_mask = c_mask.squeeze(1).to(torch.cuda.current_device()) - reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device()) - r_mask = r_mask.squeeze(1).to(torch.cuda.current_device()) - chosen_reward = self.model(chosen_ids, attention_mask=c_mask) - reject_reward = self.model(reject_ids, attention_mask=r_mask) - num_samples += chosen_ids.size(0) - num_correct += (chosen_reward > reject_reward).sum().item() - dist += (chosen_reward - reject_reward).mean().item() - self.dist = dist / len(self.eval_dataloader) - self.acc = num_correct / num_samples - - if self.writer: - self.writer.add_scalar("eval/dist", self.dist, epoch) - self.writer.add_scalar("eval/acc", self.acc, epoch) - - def _train(self, epoch): - self.model.train() - step_bar = tqdm.trange( - len(self.train_dataloader), desc=f"Epoch {epoch + 1}/{self.max_epochs}", disable=not is_rank_0() - ) - for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader: - chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device()) - c_mask = c_mask.squeeze(1).to(torch.cuda.current_device()) - reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device()) - r_mask = r_mask.squeeze(1).to(torch.cuda.current_device()) - chosen_reward = self.model(chosen_ids, attention_mask=c_mask) - reject_reward = self.model(reject_ids, attention_mask=r_mask) - loss = self.loss_fn(chosen_reward, reject_reward) - self.strategy.backward(loss, self.model, self.optimizer) - self.strategy.optimizer_step(self.optimizer) - self.optimizer.zero_grad() - if self.writer: - self.writer.add_scalar("train/loss", loss.item(), self.num_train_step) - self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step) - self.writer.add_scalar("train/dist", (chosen_reward - reject_reward).mean().item(), self.num_train_step) - self.writer.add_scalar( - "train/acc", (chosen_reward > reject_reward).float().mean().item(), self.num_train_step - ) - self.num_train_step += 1 - if self.num_train_step % 100 == 0: - self.scheduler.step() - step_bar.update() - step_bar.close() - - def _before_fit( - self, - train_dataloader: DataLoader, - eval_dataloader: DataLoader, - log_dir: Optional[str] = None, - use_wandb: bool = False, - ): - """ - Args: - train_dataloader (DataLoader): the dataloader to use for training - eval_dataloader (DataLoader): the dataloader to use for evaluation - """ - self.train_dataloader = train_dataloader - self.eval_dataloader = eval_dataloader - - self.writer = None - if use_wandb and is_rank_0(): - assert log_dir is not None, "log_dir must be provided when use_wandb is True" - import wandb - - wandb.init(project="Coati-rm", sync_tensorboard=True) - if log_dir is not None and is_rank_0(): - import os - import time - - from torch.utils.tensorboard import SummaryWriter - - log_dir = os.path.join(log_dir, "rm") - log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) - self.writer = SummaryWriter(log_dir=log_dir) diff --git a/applications/Chat/coati/trainer/sft.py b/applications/Chat/coati/trainer/sft.py deleted file mode 100644 index 7d0eeec89..000000000 --- a/applications/Chat/coati/trainer/sft.py +++ /dev/null @@ -1,130 +0,0 @@ -from typing import Optional - -import torch -import torch.distributed as dist -import tqdm -from torch.optim import Optimizer -from torch.optim.lr_scheduler import _LRScheduler -from torch.utils.data import DataLoader - -from colossalai.logging import DistributedLogger - -from .base import SLTrainer -from .strategies import GeminiStrategy, Strategy -from .utils import is_rank_0, to_device - - -class SFTTrainer(SLTrainer): - """ - Trainer to use while training reward model. - - Args: - model (torch.nn.Module): the model to train - strategy (Strategy): the strategy to use for training - optim(Optimizer): the optimizer to use for training - lr_scheduler(_LRScheduler): the lr scheduler to use for training - max_epochs (int, defaults to 2): the number of epochs to train - accumulation_steps (int, defaults to 8): the number of steps to accumulate gradients - """ - - def __init__( - self, - model, - strategy: Strategy, - optim: Optimizer, - lr_scheduler: _LRScheduler, - max_epochs: int = 2, - accumulation_steps: int = 8, - ) -> None: - if accumulation_steps > 1: - assert not isinstance( - strategy, GeminiStrategy - ), "Accumulation steps are not supported in stage 3 of ColossalAI" - - super().__init__(strategy, max_epochs, model, optim) - - self.accumulation_steps = accumulation_steps - self.scheduler = lr_scheduler - - self.num_train_step = 0 - self.num_eval_step = 0 - - def _train(self, epoch: int): - self.model.train() - step_bar = tqdm.trange( - len(self.train_dataloader) // self.accumulation_steps, - desc=f"Epoch {epoch + 1}/{self.max_epochs}", - disable=not is_rank_0(), - ) - for i, batch in enumerate(self.train_dataloader): - batch = to_device(batch, torch.cuda.current_device()) - outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]) - loss = outputs.loss / self.accumulation_steps - self.total_loss += loss.item() - self.strategy.backward(loss, self.model, self.optimizer) - # gradient accumulation - if (i + 1) % self.accumulation_steps == 0: - self.strategy.optimizer_step(self.optimizer) - self.optimizer.zero_grad() - self.scheduler.step() - if self.writer: - self.writer.add_scalar("train/loss", self.total_loss, self.num_train_step) - self.writer.add_scalar("train/lr", self.scheduler.get_last_lr()[0], self.num_train_step) - self.num_train_step += 1 - self.total_loss = 0 - step_bar.update() - step_bar.close() - - def _eval(self, epoch: int): - if self.eval_dataloader is not None: - self.model.eval() - with torch.no_grad(): - loss_sum, num_seen = 0, 0 - for batch in self.eval_dataloader: - batch = to_device(batch, torch.cuda.current_device()) - outputs = self.model( - batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"] - ) - loss_sum += outputs.loss.item() - num_seen += batch["input_ids"].size(0) - loss_mean = loss_sum / num_seen - if dist.get_rank() == 0: - self.logger.info(f"Eval Epoch {epoch}/{self.max_epochs} loss {loss_mean}") - if self.writer: - self.writer.add_scalar("eval/loss", loss_mean, self.num_eval_step) - self.num_eval_step += 1 - - def _before_fit( - self, - train_dataloader: DataLoader, - eval_dataloader: Optional[DataLoader] = None, - logger: Optional[DistributedLogger] = None, - log_dir: Optional[str] = None, - use_wandb: bool = False, - ): - """ - Args: - train_dataloader: the dataloader to use for training - eval_dataloader: the dataloader to use for evaluation - """ - self.train_dataloader = train_dataloader - self.eval_dataloader = eval_dataloader - - self.logger = logger - self.writer = None - if use_wandb and is_rank_0(): - assert log_dir is not None, "log_dir must be provided when use_wandb is True" - import wandb - - wandb.init(project="Coati-sft", sync_tensorboard=True) - if log_dir is not None and is_rank_0(): - import os - import time - - from torch.utils.tensorboard import SummaryWriter - - log_dir = os.path.join(log_dir, "sft") - log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) - self.writer = SummaryWriter(log_dir=log_dir) - - self.total_loss = 0 diff --git a/applications/Chat/coati/trainer/strategies/__init__.py b/applications/Chat/coati/trainer/strategies/__init__.py deleted file mode 100644 index 521dcb585..000000000 --- a/applications/Chat/coati/trainer/strategies/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .base import Strategy -from .colossalai import GeminiStrategy, LowLevelZeroStrategy -from .ddp import DDPStrategy - -__all__ = ["Strategy", "DDPStrategy", "LowLevelZeroStrategy", "GeminiStrategy"] diff --git a/applications/Chat/coati/trainer/strategies/base.py b/applications/Chat/coati/trainer/strategies/base.py deleted file mode 100644 index a78716216..000000000 --- a/applications/Chat/coati/trainer/strategies/base.py +++ /dev/null @@ -1,137 +0,0 @@ -from abc import ABC, abstractmethod -from contextlib import nullcontext -from typing import Callable, Dict, List, Optional, Tuple, Union - -import torch -import torch.nn as nn -from coati.experience_buffer import ExperienceBuffer -from torch.optim import Optimizer -from torch.utils.data import DataLoader -from transformers.tokenization_utils_base import PreTrainedTokenizerBase - -from colossalai.booster import Booster -from colossalai.booster.plugin import Plugin - -from .sampler import DistributedSampler - -_BoostArgSpec = Union[nn.Module, Tuple[nn.Module, Optimizer], Dict] - - -class Strategy(ABC): - """ - Base class for training strategies. - """ - - def __init__(self, plugin_initializer: Callable[..., Optional[Plugin]] = lambda: None) -> None: - super().__init__() - # NOTE: dist must be initialized before Booster - self.setup_distributed() - self.plugin = plugin_initializer() - self.booster = Booster(plugin=self.plugin) - self._post_init() - - @abstractmethod - def _post_init(self) -> None: - pass - - def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None: - self.booster.backward(loss, optimizer) - - def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None: - optimizer.step() - - @abstractmethod - def setup_distributed(self) -> None: - pass - - @abstractmethod - def setup_dataloader(self, data_buffer: ExperienceBuffer, pin_memory: bool = False) -> DataLoader: - pass - - def model_init_context(self): - return nullcontext() - - def prepare(self, *boost_args: _BoostArgSpec) -> Union[List[_BoostArgSpec], _BoostArgSpec]: - """Prepare [model | (model, optimizer) | Dict] based on each strategy. - NOTE: the keys of Dict must be a subset of `self.booster.boost`'s arguments. - - Example:: - >>> # e.g., include lr_scheduler - >>> result_dict = strategy.prepare(dict(model=model, lr_scheduler=lr_scheduler)) - >>> # when fine-tuning actor and critic - >>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model) - >>> # or when training reward model - >>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim)) - >>> # or just inference - >>> actor, critic = strategy.prepare(actor, critic) - - Returns: - Union[List[_BoostArgSpec], _BoostArgSpec]: [model | (model, optimizer) | Dict] in the original order. - """ - - rets = [] - for arg in boost_args: - if isinstance(arg, nn.Module): - model, *_ = self.booster.boost(arg) - rets.append(model) - elif isinstance(arg, tuple): - try: - model, optimizer = arg - except ValueError: - raise RuntimeError(f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"') - model, optimizer, *_ = self.booster.boost(model=model, optimizer=optimizer) - rets.append((model, optimizer)) - elif isinstance(arg, Dict): - model, optimizer, criterion, dataloader, lr_scheduler = self.booster.boost(**arg) - boost_result = dict( - model=model, - optimizer=optimizer, - criterion=criterion, - dataloader=dataloader, - lr_scheduler=lr_scheduler, - ) - # remove None values - boost_result = {key: value for key, value in boost_result.items() if value is not None} - rets.append(boost_result) - else: - raise RuntimeError(f"Type {type(arg)} is not supported") - - return rets[0] if len(rets) == 1 else rets - - @staticmethod - def unwrap_model(model: nn.Module) -> nn.Module: - """Get the unwrapped model from a wrapped model made by Strategy.prepare. - - Args: - model (nn.Module): the model to unwrap - - Returns: - nn.Module: the original model - """ - return model - - def save_model(self, model: nn.Module, path: str, shard: bool = False, **kwargs) -> None: - self.booster.save_model(model, path, shard=shard, **kwargs) - - def load_model(self, model: nn.Module, path: str, strict: bool = True) -> None: - self.booster.load_model(model, path, strict) - - def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False, **kwargs) -> None: - self.booster.save_optimizer(optimizer, path, shard=not only_rank0, **kwargs) - - def load_optimizer(self, optimizer: Optimizer, path: str) -> None: - self.booster.load_optimizer(optimizer, path) - - def setup_sampler(self, dataset) -> DistributedSampler: - # FIXME(cwher): this is only invoked in train_on_ray, not tested after adapt Boost API. - return DistributedSampler(dataset, 1, 0) - - @abstractmethod - def save_pretrained( - self, model: nn.Module, path: str, only_rank0: bool = True, tokenizer: Optional[PreTrainedTokenizerBase] = None - ) -> None: - pass - - @abstractmethod - def get_model_state_dict_shard(self, model: nn.Module, **config): - pass diff --git a/applications/Chat/coati/trainer/strategies/colossalai.py b/applications/Chat/coati/trainer/strategies/colossalai.py deleted file mode 100644 index 95f016786..000000000 --- a/applications/Chat/coati/trainer/strategies/colossalai.py +++ /dev/null @@ -1,209 +0,0 @@ -import warnings -from typing import Optional - -import torch.nn as nn - -import colossalai -from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin -from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel -from colossalai.zero.gemini.gemini_ddp import GeminiDDP - -from .ddp import DDPStrategy - - -class LowLevelZeroStrategy(DDPStrategy): - """ - The strategy for training with ColossalAI. - - Args: - stage(int): The stage to use in ZeRO. Choose in (1, 2) - precision(str): The precision to use. Choose in ('fp32', 'fp16'). - seed(int): The seed for the random number generator. - placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda') - If it is “cpu”, parameters, gradients and optimizer states will be offloaded to CPU, - If it is “cuda”, they will not be offloaded, which means max CUDA memory will be used. It is the fastest. - reduce_bucket_size(int): The reduce bucket size in bytes. Only for ZeRO-1 and ZeRO-2. - overlap_communication(bool): Whether to overlap communication and computation. Only for ZeRO-1 and ZeRO-2. - initial_scale(float): The initial scale for the optimizer. - growth_factor(float): The growth factor for the optimizer. - backoff_factor(float): The backoff factor for the optimizer. - growth_interval(int): The growth interval for the optimizer. - hysteresis(int): The hysteresis for the optimizer. - min_scale(float): The minimum scale for the optimizer. - max_scale(float): The maximum scale for the optimizer. - max_norm(float): The maximum norm for the optimizer. - norm_type(float): The norm type for the optimizer. - - """ - - def __init__( - self, - stage: int = 2, - precision: str = "fp16", - seed: int = 42, - placement_policy: str = "cuda", - reduce_bucket_size: int = 12 * 1024**2, # only for stage 1&2 - overlap_communication: bool = True, # only for stage 1&2 - initial_scale: float = 2**16, - growth_factor: float = 2, - backoff_factor: float = 0.5, - growth_interval: int = 1000, - hysteresis: int = 2, - min_scale: float = 1, - max_scale: float = 2**32, - max_norm: float = 0.0, - norm_type: float = 2.0, - ) -> None: - assert stage in (1, 2), f'Unsupported stage "{stage}"' - assert placement_policy in ("cpu", "cuda"), f'Unsupported placement policy "{placement_policy}"' - assert precision in ("fp32", "fp16"), f'Unsupported precision "{precision}"' - - plugin_initializer = lambda: LowLevelZeroPlugin( - stage=stage, - precision=precision, - reduce_bucket_size_in_m=reduce_bucket_size, - overlap_communication=overlap_communication, - cpu_offload=(placement_policy == "cpu"), - initial_scale=initial_scale, - growth_factor=growth_factor, - backoff_factor=backoff_factor, - growth_interval=growth_interval, - hysteresis=hysteresis, - min_scale=min_scale, - max_scale=max_scale, - max_norm=max_norm, - norm_type=norm_type, - ) - - super().__init__(seed, plugin_initializer) - - def _post_init(self) -> None: - assert isinstance( - self.plugin, LowLevelZeroPlugin - ), f"{type(self).__name__}'s plugin is not initialized properly." - - def setup_distributed(self) -> None: - colossalai.launch_from_torch({}, seed=self.seed) - - def unwrap_model(self, model: nn.Module) -> nn.Module: - assert isinstance(model, LowLevelZeroModel) - return model.module - - def get_model_state_dict_shard(self, model: nn.Module, **config): - assert isinstance(model, LowLevelZeroModel) - yield from model.state_dict_shard(max_shard_size=1024, only_rank_0=False) - - -class GeminiStrategy(DDPStrategy): - """ - The strategy for training with ColossalAI. - - Args: - seed(int): The seed for the random number generator. - shard_init(bool): Whether to shard the model parameters during initialization. Only for ZeRO-3. - This is not compatible with `from_pretrained()`. We temporarily disable this and will support it in the future. - placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda') - If it is “cpu”, parameters, gradients and optimizer states will be offloaded to CPU, - If it is “cuda”, they will not be offloaded, which means max CUDA memory will be used. It is the fastest. - pin_memory(bool): Whether to pin the memory for the data loader. Only for ZeRO-3. - force_outputs_fp32(bool): Whether to force the outputs to be fp32. Only for ZeRO-3. - search_range_m(int): The number of search range for the chunk size, divided by 2^20. Only for ZeRO-3. - hidden_dim(optional, int): The hidden dimension for the gemini. Only for ZeRO-3. - min_chunk_size_m(float): The minimum chunk size divided by 2^20. Only for ZeRO-3. - gpu_margin_mem_ratio(float): The margin memory ratio for the GPU. Only for ZeRO-3. - initial_scale(float): The initial scale for the optimizer. - growth_factor(float): The growth factor for the optimizer. - backoff_factor(float): The backoff factor for the optimizer. - growth_interval(int): The growth interval for the optimizer. - hysteresis(int): The hysteresis for the optimizer. - min_scale(float): The minimum scale for the optimizer. - max_scale(float): The maximum scale for the optimizer. - max_norm(float): The maximum norm for the optimizer. - norm_type(float): The norm type for the optimizer. - - """ - - def __init__( - self, - seed: int = 42, - shard_init: bool = False, # only for stage 3 - placement_policy: str = "auto", - shard_param_frac: float = 1.0, # only for static placement - offload_optim_frac: float = 0.0, # only for static placement - offload_param_frac: float = 0.0, # only for static placement - pin_memory: bool = True, # only for stage 3 - force_outputs_fp32: bool = False, # only for stage 3 - search_range_m: int = 32, # only for stage 3 - hidden_dim: Optional[int] = None, # only for stage 3 - min_chunk_size_m: float = 32, # only for stage 3 - gpu_margin_mem_ratio: float = 0.0, # only for stage 3 - initial_scale: float = 2**16, - growth_factor: float = 2, - backoff_factor: float = 0.5, - growth_interval: int = 1000, - hysteresis: int = 2, - min_scale: float = 1, - max_scale: float = 2**32, - max_norm: float = 0.0, - norm_type: float = 2.0, - ) -> None: - # TODO(ver217): support shard_init when using from_pretrained() - if shard_init: - warnings.warn( - f"Shard init is not supported model.from_pretrained() yet. " - "Please load weights after strategy.prepare()" - ) - self.shard_init = shard_init - - warnings.warn(f"Stage 3 only supports fp16. Precision is set to fp16.") - - # colossalai has changed api for get_current_device in 0.3.4 version or newer - try: - from colossalai.accelerator import get_accelerator - - chunk_init_device = get_accelerator().get_current_device() - except: - from colossalai.utils import get_current_device - - chunk_init_device = get_current_device() - - # NOTE: dist should be initialized before calling get_current_device() - plugin_initializer = lambda: GeminiPlugin( - chunk_init_device=chunk_init_device, - placement_policy=placement_policy, - shard_param_frac=shard_param_frac, - offload_optim_frac=offload_optim_frac, - offload_param_frac=offload_param_frac, - precision="fp16", - pin_memory=pin_memory, - force_outputs_fp32=force_outputs_fp32, - strict_ddp_mode=shard_init, - search_range_m=search_range_m, - hidden_dim=hidden_dim, - min_chunk_size_m=min_chunk_size_m, - gpu_margin_mem_ratio=gpu_margin_mem_ratio, - initial_scale=initial_scale, - growth_factor=growth_factor, - backoff_factor=backoff_factor, - growth_interval=growth_interval, - hysteresis=hysteresis, - min_scale=min_scale, - max_scale=max_scale, - max_norm=max_norm, - norm_type=norm_type, - ) - - super().__init__(seed, plugin_initializer) - - def _post_init(self) -> None: - assert isinstance(self.plugin, GeminiPlugin), f"{type(self).__name__}'s plugin is not initialized properly." - - def setup_distributed(self) -> None: - colossalai.launch_from_torch({}, seed=self.seed) - - def model_init_context(self): - return super().model_init_context() - - def unwrap_model(self, model: nn.Module) -> nn.Module: - assert isinstance(model, GeminiDDP) - return model.module diff --git a/applications/Chat/coati/trainer/strategies/ddp.py b/applications/Chat/coati/trainer/strategies/ddp.py deleted file mode 100644 index f2a44aeb0..000000000 --- a/applications/Chat/coati/trainer/strategies/ddp.py +++ /dev/null @@ -1,136 +0,0 @@ -import os -import random -from collections import OrderedDict -from typing import Callable, Optional - -import numpy as np -import torch -import torch.distributed as dist -import torch.nn as nn -from coati.experience_buffer import ExperienceBuffer -from coati.models import Actor, Critic, RewardModel -from torch.utils.data import DataLoader -from transformers.modeling_utils import PreTrainedModel -from transformers.tokenization_utils_base import PreTrainedTokenizerBase - -from colossalai.booster.plugin import TorchDDPPlugin -from colossalai.booster.plugin.torch_ddp_plugin import TorchDDPModel - -from .base import Strategy -from .sampler import DistributedSampler - - -# TODO Move this to a util.py (Moving to ray.util introduces ringed import) -def get_grad_required_state_dict(model: nn.Module): - state_dict = OrderedDict() - for name, parameter in model.named_parameters(): - if parameter.requires_grad: - state_dict[name] = parameter.detach() - return state_dict - - -class DDPStrategy(Strategy): - """ - Strategy for distributed training using torch.distributed. - """ - - def __init__(self, seed: int = 42, plugin_initializer: Callable = TorchDDPPlugin) -> None: - self.seed = seed - super().__init__(plugin_initializer) - - def _try_init_dist(self, force: bool = False) -> None: - try: - rank = int(os.environ["RANK"]) - local_rank = int(os.environ["LOCAL_RANK"]) - world_size = int(os.environ["WORLD_SIZE"]) - host = os.environ["MASTER_ADDR"] - port = int(os.environ["MASTER_PORT"]) - dist.init_process_group("nccl", init_method=f"tcp://[{host}]:{port}", world_size=world_size, rank=rank) - torch.cuda.set_device(local_rank) - except KeyError as e: - if force: - raise RuntimeError( - f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch" - ) - except Exception as e: - if force: - raise e - - def _post_init(self) -> None: - assert isinstance(self.plugin, TorchDDPPlugin), f"{type(self).__name__}'s plugin is not initialized properly." - - def setup_distributed(self) -> None: - self._try_init_dist(force=True) - self.set_seed(self.seed) - - def set_seed(self, seed: int) -> None: - random.seed(seed) - np.random.seed(seed) - torch.manual_seed(seed) - - def setup_dataloader(self, data_buffer: ExperienceBuffer, pin_memory: bool = False) -> DataLoader: - return self.plugin.prepare_dataloader( - data_buffer, - batch_size=data_buffer.sample_batch_size, - shuffle=True, - drop_last=True, - pin_memory=pin_memory, - collate_fn=data_buffer.collate_fn, - ) - - def setup_sampler(self, dataset) -> DistributedSampler: - # FIXME(cwher): this is only invoked in train_on_ray, not tested after adapt Boost API. - return DistributedSampler(dataset, dist.get_world_size(), dist.get_rank()) - - def unwrap_model(self, model: nn.Module) -> nn.Module: - assert isinstance(model, TorchDDPModel), "model is not wrapped by TorchDDPModel." - return model.unwrap() - - def save_pretrained( - self, model: nn.Module, path: str, shard: bool = False, tokenizer: Optional[PreTrainedTokenizerBase] = None - ) -> None: - if dist.get_rank() == 0: - unwrapped_model = self.unwrap_model(model) - assert isinstance(unwrapped_model, (Actor, Critic, RewardModel)) - pretrained_model = unwrapped_model.model - assert isinstance(pretrained_model, PreTrainedModel) - # HACK: only use hf save_pretrained to save config - pretrained_model.save_pretrained(path, save_function=lambda *args, **kwargs: None) - if tokenizer is not None: - tokenizer.save_pretrained(path) - - model_path = os.path.join(path, "pytorch_model.bin") - self.save_model(model, model_path, shard=shard) - def _replace_keys(model_path: str, replace_fn: Callable): - state_dict = torch.load(model_path, map_location="cpu") - state_dict = {replace_fn(k): v for k, v in state_dict.items()} - torch.save(state_dict, model_path) - # FIXME: save_model would add "model." prefix to keys of pytorch_model.bin - # HACK: rename keys of pytorch_model.bin - if dist.get_rank() == 0: - _replace_keys(model_path, lambda k: k.replace("model.", "", 1)) - - - def get_model_state_dict_shard(self, model: nn.Module, **config): - # TODO: implement sharding on naive strategy - model = self.unwrap_model(model) - if "requires_grad_only" in config and config["requires_grad_only"] == True: - state_dict = get_grad_required_state_dict(model) - else: - state_dict = model.state_dict() - - if "shard_size" in config: - shard_size = config["shard_size"] - accumulate_size = 0 - state_dict_shard = OrderedDict() - for name, param in state_dict.items(): - state_dict_shard[name] = param - accumulate_size += param.numel() * param.element_size() - if accumulate_size >= shard_size: - accumulate_size = 0 - yield state_dict_shard - state_dict_shard = OrderedDict() - if accumulate_size > 0: - yield state_dict_shard - else: - yield state_dict diff --git a/applications/Chat/coati/trainer/strategies/sampler.py b/applications/Chat/coati/trainer/strategies/sampler.py deleted file mode 100644 index 6e811bef1..000000000 --- a/applications/Chat/coati/trainer/strategies/sampler.py +++ /dev/null @@ -1,31 +0,0 @@ -import math - -import numpy as np - - -class DistributedSampler: - def __init__(self, dataset, num_replicas: int, rank: int) -> None: - self.dataset = dataset - self.num_replicas = num_replicas - self.rank = rank - - if len(self.dataset) % self.num_replicas != 0: - self.num_samples = math.ceil( - (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type] - ) - else: - self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) - - self.total_size = self.num_samples * self.num_replicas - - indices = list(range(len(self.dataset))) - indices = indices[: self.total_size] - assert len(indices) == self.total_size - # subsample - indices = indices[self.rank : self.total_size : self.num_replicas] - assert len(indices) == self.num_samples - self.indices = indices - - def sample(self, batch_size: int) -> list: - sampled_indices = np.random.choice(self.indices, batch_size, replace=False) - return [self.dataset[idx] for idx in sampled_indices] diff --git a/applications/Chat/coati/trainer/utils.py b/applications/Chat/coati/trainer/utils.py deleted file mode 100644 index 7811e7365..000000000 --- a/applications/Chat/coati/trainer/utils.py +++ /dev/null @@ -1,50 +0,0 @@ -from typing import Any - -import torch -import torch.distributed as dist -from torch.utils._pytree import tree_map -from torch.utils.data import DataLoader - - -class CycledDataLoader: - """ - Why do we need this class? - In version 4da324cd60, "prompts = next(iter(self.prompt_dataloader))" is used to sample a batch of prompts/pretrain. - However, this may be inefficient due to frequent re-initialization of the dataloader. (re-initialize workers...) - NOTE: next(iter(dataloader)) is not equivalent to for batch in dataloader: break, it causes slightly different behavior. - """ - - def __init__( - self, - dataloader: DataLoader, - ) -> None: - self.dataloader = dataloader - - self.count = 0 - self.dataloader_iter = None - - def next(self): - # defer initialization - if self.dataloader_iter is None: - self.dataloader_iter = iter(self.dataloader) - - self.count += 1 - try: - return next(self.dataloader_iter) - except StopIteration: - self.count = 0 - self.dataloader_iter = iter(self.dataloader) - return next(self.dataloader_iter) - - -def is_rank_0() -> bool: - return not dist.is_initialized() or dist.get_rank() == 0 - - -def to_device(x: Any, device: torch.device) -> Any: - def _to(t: Any): - if isinstance(t, torch.Tensor): - return t.to(device) - return t - - return tree_map(_to, x) diff --git a/applications/Chat/examples/README.md b/applications/Chat/examples/README.md deleted file mode 100644 index 9438aafd1..000000000 --- a/applications/Chat/examples/README.md +++ /dev/null @@ -1,409 +0,0 @@ -# Examples - -## Table of Contents - -- [Examples](#examples) - - [Table of Contents](#table-of-contents) - - [Install requirements](#install-requirements) - - [Supervised datasets collection](#supervised-datasets-collection) - - [Conversation dataset generation](#conversation-dataset-generation) - - [Stage1 - Supervised instructs tuning](#stage1---supervised-instructs-tuning) - - [Arg List](#arg-list) - - [Stage2 - Training reward model](#stage2---training-reward-model) - - [Features and tricks in RM training](#features-and-tricks-in-rm-training) - - [Experiment result](#experiment-result) - - [Arg List](#arg-list-1) - - [Stage3 - Training model using prompts with RL](#stage3---training-model-using-prompts-with-rl) - - [Arg List](#arg-list-2) - - [Inference example - After Stage3](#inference-example---after-stage3) - - [Attention](#attention) - - [data](#data) - - [Support Model](#support-model) - - [GPT](#gpt) - - [BLOOM](#bloom) - - [OPT](#opt) - - [LLaMA](#llama) - - [Add your own models](#add-your-own-models) - - [Actor model](#actor-model) - - [Reward model](#reward-model) - - [Critic model](#critic-model) - ---- - -## Install requirements - -```shell -pip install -r requirements.txt -``` - -## Supervised datasets collection - -We collected 104K bilingual datasets of Chinese and English, and you can find the datasets in this repo -[InstructionWild](https://github.com/XueFuzhao/InstructionWild) and in this [file](https://github.com/XueFuzhao/InstructionWild/blob/main/data/README.md). - -Here is how we collected the data - -

- -

- -### Conversation dataset generation - -In order to further improve the model's ability to handle multi-turn conversations, we need to include samples with multi-turn conversations in the dataset. However, the samples in InstructWild and Alpaca datasets currently consist of only single-turn conversations, and their dataset organization is not suitable for storing multi-turn conversations. Additionally, after converting the aforementioned datasets, we also need to include multi-turn conversation datasets like ShareGPT, and we should transform them into the training format supported by ColossalChat. - -A sample of conversation dataset should have the following fields: - -- `type` (str, optional): The type of the data sample. -- `language` (str, optional): The language of the data sample. -- `dataset` (str, optional): The dataset the data sample originates from. -- `conversations` (str, compulsory): Conversation content of the data sample. -- `id` (int, optional): The ID of the data sample. - -A simple example: - -```json -{ - "type": "instruction", - "language": "English", - "dataset": "Alpaca", - "conversations": [ - { - "from": "human", - "value": "Give three tips for staying healthy." - }, - { - "from": "gpt", - "value": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule." - } - ], - "id": 1 -} -``` - -> **NOTE:** Only key `conversations` is compulsary for training and other keys serve as metadata. The length of `conversations` varies. - -You can run the `examples/generate_conversation_dataset.py` to generate a conversation dataset supported by ColossalChat. - -You can use the following cmd to generate conversation dataset. - -```bash -python generate_conversation_dataset.py \ - --dataset "All" - --save_path "/path/to/dataset" -``` - -## Stage1 - Supervised instructs tuning - -Stage1 is supervised instructs fine-tuning, which uses the datasets mentioned earlier to fine-tune the model. -[[Stage1 tutorial video]](https://www.youtube.com/watch?v=-qFBZFmOJfg) - -You can run the `examples/train_sft.sh` to start a supervised instructs fine-tuning. - -You can also use the following cmd to start a supervised instructs fine-tuning with your own settings. - -```bash -torchrun --standalone --nproc_per_node=4 train_sft.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy colossalai_zero2 \ - --save_path /path/to/Coati-7B \ - --dataset /path/to/data.json \ - --batch_size 4 \ - --accumulation_steps 8 \ - --lr 2e-5 \ - --max_datasets_size 512 \ - --max_epochs 1 \ - --grad_checkpoint -``` - -**Note**: the supervised dataset follows the following format, - -```json -[ - { - "instruction": "Provide a list of the top 10 most popular mobile games in Asia", - "input": "", - "output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved", - "id": 0 - }, - ... -] -``` - -### Arg List - -- `--strategy`: the strategy using for training, choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2' -- `--model`: model type, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom' -- `--pretrain`: pretrain model, type=str, default=None -- `--max_datasets_size`: the max size of dataset, type=int, default=None -- `--save_path`: path to save the model, type=str, default='output' -- `--need_optim_ckpt`: whether to save optim ckpt, type=bool, default=False -- `--max_epochs`: max epochs for training, type=int, default=3 -- `--batch_size`: batch size while training, type=int, default=4 -- `--lora_rank`: low-rank adaptation matrices rank, type=int, default=0 -- `--grad_checkpoint`: enable gradient checkpointing, type=bool, default=False - -## Stage2 - Training reward model - -We train a reward model in stage 2, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model. -[[Stage2 tutorial video]](https://www.youtube.com/watch?v=gMx2CApKhuo) - -You can run the `examples/train_rm.sh` to start a reward model training. - -You can also use the following cmd to start training a reward model. - -```bash -torchrun --standalone --nproc_per_node=4 train_reward_model.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy colossalai_zero2 \ - --loss_fn 'log_exp'\ - --save_path 'rmstatic.pt' \ -``` - -### Features and tricks in RM training - -- We support [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)and[rm-static](https://huggingface.co/datasets/Dahoas/rm-static) datasets. -- We support 2 kinds of loss function named `log_sig`(used by OpenAI) and `log_exp`(used by Anthropic). -- We change the loss to `valid_acc` and `pair_dist` to monitor progress during training. -- We add special token to the end of the sequence to get better result. -- We use cosine-reducing lr-scheduler for RM training. -- We set value_head as 1 liner layer and initialize the weight of value_head using N(0,1/(d_model + 1)) distribution. -- We train a Bloom-560m reward model for 1 epoch and find the test acc of the model achieve the performance mentions in [Anthropics paper](https://arxiv.org/abs/2204.05862). - -### Experiment result - -Model performance in [Anthropics paper](https://arxiv.org/abs/2204.05862): - -
image - -
Our training & test result of bloom-560m for 1 epoch: - -
image - -
We also train the reward model based on LLaMA-7B, which reaches the ACC of 72.06% after 1 epoch, performing almost the same as Anthropic's best RM. - -### Arg List - -- `--strategy`: the strategy using for training, choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2' -- `--model`: model type, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom' -- `--pretrain`: pretrain model, type=str, default=None -- `--model_path`: the path of rm model(if continue to train), type=str, default=None -- `--save_path`: path to save the model, type=str, default='output' -- `--need_optim_ckpt`: whether to save optim ckpt, type=bool, default=False -- `--max_epochs`: max epochs for training, type=int, default=3 -- `--dataset`: dataset name, type=str, choices=['Anthropic/hh-rlhf', 'Dahoas/rm-static'] -- `--subset`: subset of the dataset, type=str, default=None -- `--batch_size`: batch size while training, type=int, default=4 -- `--lora_rank`: low-rank adaptation matrices rank, type=int, default=0 -- `--loss_func`: which kind of loss function, choices=['log_sig', 'log_exp'] -- `--max_len`: max sentence length for generation, type=int, default=512 - -## Stage3 - Training model using prompts with RL - -Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process, as shown below: - -

- -

- -You can run the `examples/train_prompts.sh` to start PPO training. - -You can also use the cmd following to start PPO training. -[[Stage3 tutorial video]](https://www.youtube.com/watch?v=Z8wwSHxPL9g) - -```bash -torchrun --standalone --nproc_per_node=4 train_prompts.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy colossalai_zero2 \ - --prompt_dataset /path/to/your/prompt_dataset \ - --pretrain_dataset /path/to/your/pretrain_dataset \ - --rm_pretrain /your/pretrain/rm/definition \ - --rm_path /your/rm/model/path -``` - -Prompt dataset: the instruction dataset mentioned in the above figure which includes the instructions, e.g. you can use the [script](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/examples/generate_prompt_dataset.py) which samples `instinwild_en.json` or `instinwild_ch.json` in [InstructionWild](https://github.com/XueFuzhao/InstructionWild/tree/main/data#instructwild-data) to generate the prompt dataset. -Pretrain dataset: the pretrain dataset including the instruction and corresponding response, e.g. you can use the [InstructWild Data](https://github.com/XueFuzhao/InstructionWild/tree/main/data) in stage 1 supervised instructs tuning. - -**Note**: the required datasets follow the following format, - -- `pretrain dataset` - - ```json - [ - { - "instruction": "Provide a list of the top 10 most popular mobile games in Asia", - "input": "", - "output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved", - "id": 0 - }, - ... - ] - ``` - -- `prompt dataset` - - ```json - [ - { - "instruction": "Edit this paragraph to make it more concise: \"Yesterday, I went to the store and bought some things. Then, I came home and put them away. After that, I went for a walk and met some friends.\"", - "id": 0 - }, - { - "instruction": "Write a descriptive paragraph about a memorable vacation you went on", - "id": 1 - }, - ... - ] - ``` - -### Arg List - -- `--strategy`: the strategy using for training, choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2' -- `--model`: model type of actor, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom' -- `--pretrain`: pretrain model, type=str, default=None -- `--rm_model`: reward model type, type=str, choices=['gpt2', 'bloom', 'opt', 'llama'], default=None -- `--rm_pretrain`: pretrain model for reward model, type=str, default=None -- `--rm_path`: the path of rm model, type=str, default=None -- `--save_path`: path to save the model, type=str, default='output' -- `--prompt_dataset`: path of the prompt dataset, type=str, default=None -- `--pretrain_dataset`: path of the ptx dataset, type=str, default=None -- `--need_optim_ckpt`: whether to save optim ckpt, type=bool, default=False -- `--num_episodes`: num of episodes for training, type=int, default=10 -- `--num_update_steps`: number of steps to update policy per episode, type=int -- `--num_collect_steps`: number of steps to collect experience per episode, type=int -- `--train_batch_size`: batch size while training, type=int, default=8 -- `--ptx_batch_size`: batch size to compute ptx loss, type=int, default=1 -- `--experience_batch_size`: batch size to make experience, type=int, default=8 -- `--lora_rank`: low-rank adaptation matrices rank, type=int, default=0 -- `--kl_coef`: kl_coef using for computing reward, type=float, default=0.1 -- `--ptx_coef`: ptx_coef using for computing policy loss, type=float, default=0.9 - -## Inference example - After Stage3 - -We support different inference options, including int8 and int4 quantization. -For details, see [`inference/`](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/inference). - -## Attention - -The examples are demos for the whole training process.You need to change the hyper-parameters to reach great performance. - -#### data - -- [x] [rm-static](https://huggingface.co/datasets/Dahoas/rm-static) -- [x] [hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) -- [ ] [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) -- [ ] [openai/webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons) -- [ ] [Dahoas/instruct-synthetic-prompt-responses](https://huggingface.co/datasets/Dahoas/instruct-synthetic-prompt-responses) - -## Support Model - -### GPT - -- [x] GPT2-S (s) -- [x] GPT2-M (m) -- [x] GPT2-L (l) -- [x] GPT2-XL (xl) -- [x] GPT2-4B (4b) -- [ ] GPT2-6B (6b) - -### BLOOM - -- [x] [BLOOM-560m](https://huggingface.co/bigscience/bloom-560m) -- [x] [BLOOM-1b1](https://huggingface.co/bigscience/bloom-1b1) -- [x] [BLOOM-3b](https://huggingface.co/bigscience/bloom-3b) -- [x] [BLOOM-7b](https://huggingface.co/bigscience/bloom-7b1) -- [ ] [BLOOM-175b](https://huggingface.co/bigscience/bloom) - -### OPT - -- [x] [OPT-125M](https://huggingface.co/facebook/opt-125m) -- [x] [OPT-350M](https://huggingface.co/facebook/opt-350m) -- [x] [OPT-1.3B](https://huggingface.co/facebook/opt-1.3b) -- [x] [OPT-2.7B](https://huggingface.co/facebook/opt-2.7b) -- [x] [OPT-6.7B](https://huggingface.co/facebook/opt-6.7b) -- [ ] [OPT-13B](https://huggingface.co/facebook/opt-13b) -- [ ] [OPT-30B](https://huggingface.co/facebook/opt-30b) - -### [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) - -- [x] LLaMA-7B -- [x] LLaMA-13B -- [ ] LLaMA-33B -- [ ] LLaMA-65B - -## Add your own models - -If you want to support your own model in Coati, please refer the pull request for RoBERTa support as an example --[[chatgpt] add pre-trained model RoBERTa for RLHF stage 2 & 3](https://github.com/hpcaitech/ColossalAI/pull/3223), and submit a PR to us. - -You should complete the implementation of four model classes, including Reward model, Critic model, LM model, Actor model - -here are some example code for a NewModel named `Coati`. -if it is supported in huggingface [transformers](https://github.com/huggingface/transformers), you can load it by `from_pretrained`, o -r you can build your own model by yourself. - -### Actor model - -```python -from ..base import Actor -from transformers.models.coati import CoatiModel - -class CoatiActor(Actor): - def __init__(self, - pretrained: Optional[str] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = 'none') -> None: - if pretrained is not None: - model = CoatiModel.from_pretrained(pretrained) - else: - model = build_model() # load your own model if it is not support in transformers - - super().__init__(model, lora_rank, lora_train_bias) -``` - -### Reward model - -```python -from ..base import RewardModel -from transformers.models.coati import CoatiModel - -class CoatiRM(RewardModel): - - def __init__(self, - pretrained: Optional[str] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = 'none') -> None: - if pretrained is not None: - model = CoatiModel.from_pretrained(pretrained) - else: - model = build_model() # load your own model if it is not support in transformers - - value_head = nn.Linear(model.config.n_embd, 1) - value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1)) - super().__init__(model, value_head, lora_rank, lora_train_bias) -``` - -### Critic model - -```python -from ..base import Critic -from transformers.models.coati import CoatiModel - -class CoatiCritic(Critic): - def __init__(self, - pretrained: Optional[str] = None, - checkpoint: bool = False, - lora_rank: int = 0, - lora_train_bias: str = 'none') -> None: - if pretrained is not None: - model = CoatiModel.from_pretrained(pretrained) - else: - model = build_model() # load your own model if it is not support in transformers - - value_head = nn.Linear(model.config.n_embd, 1) - value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1)) - super().__init__(model, value_head, lora_rank, lora_train_bias) -``` diff --git a/applications/Chat/examples/download_model.py b/applications/Chat/examples/download_model.py deleted file mode 100644 index ec3482b5f..000000000 --- a/applications/Chat/examples/download_model.py +++ /dev/null @@ -1,79 +0,0 @@ -import argparse -import dataclasses -import os -import parser -from typing import List - -import tqdm -from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic -from coati.models.gpt import GPTRM, GPTActor, GPTCritic -from coati.models.opt import OPTRM, OPTActor, OPTCritic -from huggingface_hub import hf_hub_download, snapshot_download -from transformers import AutoConfig, AutoTokenizer, BloomConfig, BloomTokenizerFast, GPT2Config, GPT2Tokenizer - - -@dataclasses.dataclass -class HFRepoFiles: - repo_id: str - files: List[str] - - def download(self, dir_path: str): - for file in self.files: - file_path = hf_hub_download(self.repo_id, file, local_dir=dir_path) - - def download_all(self): - snapshot_download(self.repo_id) - - -def test_init(model: str, dir_path: str): - if model == "gpt2": - config = GPT2Config.from_pretrained(dir_path) - actor = GPTActor(config=config) - critic = GPTCritic(config=config) - reward_model = GPTRM(config=config) - GPT2Tokenizer.from_pretrained(dir_path) - elif model == "bloom": - config = BloomConfig.from_pretrained(dir_path) - actor = BLOOMActor(config=config) - critic = BLOOMCritic(config=config) - reward_model = BLOOMRM(config=config) - BloomTokenizerFast.from_pretrained(dir_path) - elif model == "opt": - config = AutoConfig.from_pretrained(dir_path) - actor = OPTActor(config=config) - critic = OPTCritic(config=config) - reward_model = OPTRM(config=config) - AutoTokenizer.from_pretrained(dir_path) - else: - raise NotImplementedError(f"Model {model} not implemented") - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--model-dir", type=str, default="test_models") - parser.add_argument("--config-only", default=False, action="store_true") - args = parser.parse_args() - - if os.path.exists(args.model_dir): - print(f"[INFO]: {args.model_dir} already exists") - exit(0) - - repo_list = { - "gpt2": HFRepoFiles(repo_id="gpt2", files=["config.json", "tokenizer.json", "vocab.json", "merges.txt"]), - "bloom": HFRepoFiles( - repo_id="bigscience/bloom-560m", files=["config.json", "tokenizer.json", "tokenizer_config.json"] - ), - "opt": HFRepoFiles( - repo_id="facebook/opt-350m", files=["config.json", "tokenizer_config.json", "vocab.json", "merges.txt"] - ), - } - - os.mkdir(args.model_dir) - for model_name in tqdm.tqdm(repo_list): - dir_path = os.path.join(args.model_dir, model_name) - if args.config_only: - os.mkdir(dir_path) - repo_list[model_name].download(dir_path) - else: - repo_list[model_name].download_all() - test_init(model_name, dir_path) diff --git a/applications/Chat/examples/generate_conversation_dataset.py b/applications/Chat/examples/generate_conversation_dataset.py deleted file mode 100644 index 7e03b2d54..000000000 --- a/applications/Chat/examples/generate_conversation_dataset.py +++ /dev/null @@ -1,82 +0,0 @@ -import argparse -import json - -from datasets import load_dataset - - -def generate_alpaca(): - # We can convert dataset with the same format("instruction", "input", "output") as Alpaca into a one-round conversation. - conversation_dataset = [] - dataset = load_dataset("tatsu-lab/alpaca", split="train") - - instructions = dataset["instruction"] - inputs = dataset["input"] - outputs = dataset["output"] - - assert len(instructions) == len(inputs) == len(outputs) - - for idx in range(len(instructions)): - human_utterance = instructions[idx] + "\n\n" + inputs[idx] if inputs[idx] else instructions[idx] - human = {"from": "human", "value": human_utterance} - - gpt_utterance = outputs[idx] - gpt = {"from": "gpt", "value": gpt_utterance} - - conversation = dict(type="instruction", language="English", dataset="Alpaca", conversations=[human, gpt]) - conversation_dataset.append(conversation) - - return conversation_dataset - - -def generate_sharegpt(): - # ShareGPT data requires less processing. - conversation_dataset = [] - dataset = load_dataset( - "anon8231489123/ShareGPT_Vicuna_unfiltered", - data_files="ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json", - split="train", - ) - - conversations = dataset["conversations"] - - for idx in range(len(conversations)): - for conv in conversations[idx]: - # We don't need markdown and text value. - del conv["markdown"] - del conv["text"] - - conversation = dict( - type="conversation", language="Multilingual", dataset="ShareGPT", conversations=conversations[idx] - ) - conversation_dataset.append(conversation) - - return conversation_dataset - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument( - "--dataset", - type=str, - default="All", - choices=["Alpaca", "ShareGPT", "All"], - help="which dataset to convert, All will combine Alpaca and ShareGPT", - ) - parser.add_argument("--save_path", type=str, default="dataset.json", help="path to save the converted dataset") - args = parser.parse_args() - - conversation_dataset = [] - - if args.dataset == "Alpaca": - conversation_dataset.extend(generate_alpaca()) - elif args.dataset == "ShareGPT": - conversation_dataset.extend(generate_sharegpt()) - else: - conversation_dataset.extend(generate_alpaca()) - conversation_dataset.extend(generate_sharegpt()) - - for idx, sample in enumerate(conversation_dataset): - sample["id"] = idx + 1 - - with open(args.save_path, mode="w") as f: - json.dump(conversation_dataset, f, indent=4, default=str, ensure_ascii=False) diff --git a/applications/Chat/examples/generate_prompt_dataset.py b/applications/Chat/examples/generate_prompt_dataset.py deleted file mode 100644 index 4eec6feae..000000000 --- a/applications/Chat/examples/generate_prompt_dataset.py +++ /dev/null @@ -1,27 +0,0 @@ -import argparse -import json -import random - -random.seed(42) - - -def sample(args): - with open(args.dataset_path, mode="r") as f: - dataset_list = json.load(f) - - sampled_dataset = [ - {"instruction": sample["instruction"], "id": idx} - for idx, sample in enumerate(random.sample(dataset_list, args.sample_size)) - ] - - with open(args.save_path, mode="w") as f: - json.dump(sampled_dataset, f, indent=4, default=str, ensure_ascii=False) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--dataset_path", type=str, default=None, required=True, help="path to the pretrain dataset") - parser.add_argument("--save_path", type=str, default="prompt.json", help="path to save the prompt dataset") - parser.add_argument("--sample_size", type=int, default=16384, help="size of the prompt dataset") - args = parser.parse_args() - sample(args) diff --git a/applications/Chat/examples/inference.py b/applications/Chat/examples/inference.py deleted file mode 100644 index 9df8649d9..000000000 --- a/applications/Chat/examples/inference.py +++ /dev/null @@ -1,73 +0,0 @@ -import argparse - -import torch -from coati.models.bloom import BLOOMActor -from coati.models.generation import generate -from coati.models.gpt import GPTActor -from coati.models.llama import LlamaActor -from coati.models.opt import OPTActor -from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer - - -def eval(args): - # configure model - if args.model == "gpt2": - actor = GPTActor(pretrained=args.pretrain) - elif args.model == "bloom": - actor = BLOOMActor(pretrained=args.pretrain) - elif args.model == "opt": - actor = OPTActor(pretrained=args.pretrain) - elif args.model == "llama": - actor = LlamaActor(pretrained=args.pretrain) - else: - raise ValueError(f'Unsupported model "{args.model}"') - - actor.to(torch.cuda.current_device()) - if args.model_path is not None: - state_dict = torch.load(args.model_path) - actor.load_state_dict(state_dict) - - # configure tokenizer - if args.model == "gpt2": - tokenizer = GPT2Tokenizer.from_pretrained("gpt2") - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "bloom": - tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m") - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "opt": - tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "llama": - tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") - tokenizer.eos_token = "" - tokenizer.pad_token = tokenizer.unk_token - else: - raise ValueError(f'Unsupported model "{args.model}"') - - actor.eval() - tokenizer.padding_side = "left" - input_ids = tokenizer.encode(args.input, return_tensors="pt").to(torch.cuda.current_device()) - outputs = generate( - actor, - input_ids, - tokenizer=tokenizer, - max_length=args.max_length, - do_sample=True, - top_k=50, - top_p=0.95, - num_return_sequences=1, - ) - output = tokenizer.batch_decode(outputs[0], skip_special_tokens=True) - print(f"[Output]: {''.join(output)}") - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--model", default="gpt2", choices=["gpt2", "bloom", "opt", "llama"]) - # We suggest to use the pretrained model from HuggingFace, use pretrain to configure model - parser.add_argument("--pretrain", type=str, default=None) - parser.add_argument("--model_path", type=str, default=None) - parser.add_argument("--input", type=str, default="Question: How are you ? Answer:") - parser.add_argument("--max_length", type=int, default=100) - args = parser.parse_args() - eval(args) diff --git a/applications/Chat/examples/train_prompts.py b/applications/Chat/examples/train_prompts.py deleted file mode 100644 index 40e06043a..000000000 --- a/applications/Chat/examples/train_prompts.py +++ /dev/null @@ -1,249 +0,0 @@ -import argparse -import warnings - -import torch -import torch.distributed as dist -from coati.dataset import PromptDataset, SupervisedDataset -from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic -from coati.models.gpt import GPTRM, GPTActor, GPTCritic -from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM -from coati.models.opt import OPTRM, OPTActor, OPTCritic -from coati.trainer import PPOTrainer -from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy -from torch.optim import Adam -from torch.utils.data import DataLoader -from torch.utils.data.distributed import DistributedSampler -from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer - -from colossalai.nn.optimizer import HybridAdam - - -def main(args): - # configure strategy - if args.strategy == "ddp": - strategy = DDPStrategy() - elif args.strategy == "colossalai_gemini": - strategy = GeminiStrategy(placement_policy="static", initial_scale=2**5) - elif args.strategy == "colossalai_zero2": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda") - else: - raise ValueError(f'Unsupported strategy "{args.strategy}"') - - if args.rm_path is not None: - warnings.warn("LoRA weights should be merged with the model weights") - state_dict = torch.load(args.rm_path, map_location="cpu") - - if args.lora_rank > 0: - warnings.warn("Lora is not supported yet.") - args.lora_rank = 0 - - with strategy.model_init_context(): - # configure model - if args.model == "gpt2": - initial_model = GPTActor(pretrained=args.pretrain) - elif args.model == "bloom": - initial_model = BLOOMActor(pretrained=args.pretrain) - elif args.model == "opt": - initial_model = OPTActor(pretrained=args.pretrain) - elif args.model == "llama": - initial_model = LlamaActor(pretrained=args.pretrain) - else: - raise ValueError(f'Unsupported actor model "{args.model}"') - - if args.rm_model is None: - rm_model_name = args.model - else: - rm_model_name = args.rm_model - - if rm_model_name == "gpt2": - reward_model = GPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - elif rm_model_name == "bloom": - reward_model = BLOOMRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - elif rm_model_name == "opt": - reward_model = OPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - elif rm_model_name == "llama": - reward_model = LlamaRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - else: - raise ValueError(f'Unsupported reward model "{rm_model_name}"') - - if args.rm_path is not None: - reward_model.load_state_dict(state_dict, strict=False) - - initial_model.to(torch.bfloat16).to(torch.cuda.current_device()) - reward_model.to(torch.bfloat16).to(torch.cuda.current_device()) - - if args.model == "gpt2": - actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank) - elif args.model == "bloom": - actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank) - elif args.model == "opt": - actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank) - elif args.model == "llama": - actor = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank) - else: - raise ValueError(f'Unsupported actor model "{args.model}"') - - if rm_model_name == "gpt2": - critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - elif rm_model_name == "bloom": - critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - elif rm_model_name == "opt": - critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - elif rm_model_name == "llama": - critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank) - else: - raise ValueError(f'Unsupported reward model "{rm_model_name}"') - - if args.rm_path is not None: - critic.load_state_dict(state_dict, strict=False) - del state_dict - - actor.to(torch.bfloat16).to(torch.cuda.current_device()) - critic.to(torch.bfloat16).to(torch.cuda.current_device()) - - # configure optimizer - if args.strategy.startswith("colossalai"): - actor_optim = HybridAdam(actor.parameters(), lr=args.lr) - critic_optim = HybridAdam(critic.parameters(), lr=args.lr) - else: - actor_optim = Adam(actor.parameters(), lr=args.lr) - critic_optim = Adam(critic.parameters(), lr=args.lr) - - # configure tokenizer - if args.model == "gpt2": - tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "bloom": - tokenizer = BloomTokenizerFast.from_pretrained( - "bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer - ) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "opt": - tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "llama": - tokenizer = LlamaTokenizer.from_pretrained( - "hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer - ) - tokenizer.eos_token = "" - tokenizer.pad_token = tokenizer.unk_token - else: - raise ValueError(f'Unsupported model "{args.model}"') - # NOTE: generate() requires padding_side to be "left" - tokenizer.padding_side = "left" - - prompt_dataset = PromptDataset( - tokenizer=tokenizer, - data_path=args.prompt_dataset, - max_datasets_size=args.max_datasets_size, - max_length=args.max_input_len, - ) - if dist.is_initialized() and dist.get_world_size() > 1: - prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True) - else: - prompt_sampler = None - prompt_dataloader = DataLoader( - prompt_dataset, shuffle=(prompt_sampler is None), sampler=prompt_sampler, batch_size=args.experience_batch_size - ) - - pretrain_dataset = SupervisedDataset( - tokenizer=tokenizer, - data_path=args.pretrain_dataset, - max_datasets_size=args.max_datasets_size, - max_length=args.max_input_len, - ) - if dist.is_initialized() and dist.get_world_size() > 1: - pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True) - else: - pretrain_sampler = None - pretrain_dataloader = DataLoader( - pretrain_dataset, shuffle=(pretrain_sampler is None), sampler=pretrain_sampler, batch_size=args.ptx_batch_size - ) - - # NOTE: For small models like opt-1.3b, reward model and initial model are not required to be parallelized. - (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare( - (actor, actor_optim), (critic, critic_optim), reward_model, initial_model - ) - - # configure trainer - trainer = PPOTrainer( - strategy, - actor, - critic, - reward_model, - initial_model, - actor_optim, - critic_optim, - tokenizer=tokenizer, - kl_coef=args.kl_coef, - ptx_coef=args.ptx_coef, - train_batch_size=args.train_batch_size, - max_length=args.max_seq_len, - use_cache=True, - do_sample=True, - temperature=1.0, - top_k=50, - offload_inference_models=args.strategy != "colossalai_gemini", - ) - - trainer.fit( - num_episodes=args.num_episodes, - num_collect_steps=args.num_collect_steps, - num_update_steps=args.num_update_steps, - prompt_dataloader=prompt_dataloader, - pretrain_dataloader=pretrain_dataloader, - log_dir=args.log_dir, - use_wandb=args.use_wandb, - ) - - if args.lora_rank > 0 and args.merge_lora_weights: - from coati.models.lora import LORA_MANAGER - - # NOTE: set model to eval to merge LoRA weights - LORA_MANAGER.merge_weights = True - actor.eval() - # save model checkpoint after fitting - strategy.save_pretrained(actor, path=args.save_path) - # save optimizer checkpoint on all ranks - if args.need_optim_ckpt: - strategy.save_optimizer( - actor_optim, "actor_optim_checkpoint_prompts_%d.pt" % (torch.cuda.current_device()), only_rank0=False - ) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--prompt_dataset", type=str, default=None, help="path to the prompt dataset") - parser.add_argument("--pretrain_dataset", type=str, default=None, help="path to the pretrained dataset") - parser.add_argument("--max_datasets_size", type=int, default=50000) - parser.add_argument( - "--strategy", - choices=["ddp", "colossalai_gemini", "colossalai_zero2"], - default="colossalai_zero2", - help="strategy to use", - ) - parser.add_argument("--model", default="gpt2", choices=["gpt2", "bloom", "opt", "llama"]) - parser.add_argument("--tokenizer", type=str, default=None) - parser.add_argument("--pretrain", type=str, default=None) - parser.add_argument("--rm_model", default=None, choices=["gpt2", "bloom", "opt", "llama"]) - parser.add_argument("--rm_path", type=str, default=None) - parser.add_argument("--rm_pretrain", type=str, default=None) - parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts") - parser.add_argument("--need_optim_ckpt", type=bool, default=False) - parser.add_argument("--num_episodes", type=int, default=10) - parser.add_argument("--num_collect_steps", type=int, default=10) - parser.add_argument("--num_update_steps", type=int, default=5) - parser.add_argument("--train_batch_size", type=int, default=8) - parser.add_argument("--ptx_batch_size", type=int, default=1) - parser.add_argument("--experience_batch_size", type=int, default=8) - parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") - parser.add_argument("--merge_lora_weights", type=bool, default=True) - parser.add_argument("--lr", type=float, default=1e-7) - parser.add_argument("--kl_coef", type=float, default=0.1) - parser.add_argument("--ptx_coef", type=float, default=0.9) - parser.add_argument("--max_input_len", type=int, default=96) - parser.add_argument("--max_seq_len", type=int, default=128) - parser.add_argument("--log_dir", default="logs", type=str) - parser.add_argument("--use_wandb", default=False, action="store_true") - args = parser.parse_args() - main(args) diff --git a/applications/Chat/examples/train_prompts.sh b/applications/Chat/examples/train_prompts.sh deleted file mode 100755 index d04c41601..000000000 --- a/applications/Chat/examples/train_prompts.sh +++ /dev/null @@ -1,25 +0,0 @@ -set_n_least_used_CUDA_VISIBLE_DEVICES() { - local n=${1:-"9999"} - echo "GPU Memory Usage:" - local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | - tail -n +2 | - nl -v 0 | - tee /dev/tty | - sort -g -k 2 | - awk '{print $1}' | - head -n $n) - export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') - echo "Now CUDA_VISIBLE_DEVICES is set to:" - echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" -} - -set_n_least_used_CUDA_VISIBLE_DEVICES 2 - -# torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai_zero2 - -torchrun --standalone --nproc_per_node=2 train_prompts.py \ - --pretrain_dataset /path/to/data.json \ - --prompt_dataset /path/to/data.json \ - --strategy colossalai_zero2 \ - --num_episodes 1 --num_collect_steps 2 --num_update_steps 1 \ - --train_batch_size 2 diff --git a/applications/Chat/examples/train_reward_model.py b/applications/Chat/examples/train_reward_model.py deleted file mode 100644 index fcdd29b29..000000000 --- a/applications/Chat/examples/train_reward_model.py +++ /dev/null @@ -1,208 +0,0 @@ -import argparse -import warnings - -import torch -import torch.distributed as dist -from coati.dataset import HhRlhfDataset, RmStaticDataset -from coati.models import LogExpLoss, LogSigLoss -from coati.models.bloom import BLOOMRM -from coati.models.gpt import GPTRM -from coati.models.llama import LlamaRM -from coati.models.opt import OPTRM -from coati.trainer import RewardModelTrainer -from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy -from datasets import load_dataset -from torch.optim import Adam -from torch.optim.lr_scheduler import CosineAnnealingLR -from torch.utils.data import DataLoader -from torch.utils.data.distributed import DistributedSampler -from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer -from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer - -from colossalai.nn.optimizer import HybridAdam - - -def train(args): - # configure strategy - if args.strategy == "ddp": - strategy = DDPStrategy() - elif args.strategy == "colossalai_gemini": - strategy = GeminiStrategy(placement_policy="auto") - elif args.strategy == "colossalai_zero2": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda") - else: - raise ValueError(f'Unsupported strategy "{args.strategy}"') - - # configure model - if args.lora_rank > 0: - warnings.warn("Lora is not supported yet.") - args.lora_rank = 0 - - with strategy.model_init_context(): - if args.model == "bloom": - model = BLOOMRM(pretrained=args.pretrain, lora_rank=args.lora_rank) - elif args.model == "opt": - model = OPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank) - elif args.model == "gpt2": - model = GPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank) - elif args.model == "llama": - model = LlamaRM(pretrained=args.pretrain, lora_rank=args.lora_rank) - else: - raise ValueError(f'Unsupported model "{args.model}"') - - model.to(torch.bfloat16).to(torch.cuda.current_device()) - - if args.model_path is not None: - state_dict = torch.load(args.model_path) - model.load_state_dict(state_dict) - - # configure tokenizer - if args.model == "gpt2": - tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "bloom": - tokenizer = BloomTokenizerFast.from_pretrained( - "bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer - ) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "opt": - tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "llama": - tokenizer = LlamaTokenizer.from_pretrained( - "hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer - ) - tokenizer.eos_token = "" - tokenizer.pad_token = tokenizer.unk_token - else: - raise ValueError(f'Unsupported model "{args.model}"') - - # configure optimizer - if args.strategy.startswith("colossalai"): - optim = HybridAdam(model.parameters(), lr=args.lr) - else: - optim = Adam(model.parameters(), lr=args.lr) - - # configure loss function - if args.loss_fn == "log_sig": - loss_fn = LogSigLoss() - elif args.loss_fn == "log_exp": - loss_fn = LogExpLoss() - else: - raise ValueError(f'Unsupported loss function "{args.loss_fn}"') - - # prepare for data and dataset - if args.subset is not None: - data = load_dataset(args.dataset, data_dir=args.subset) - else: - data = load_dataset(args.dataset) - - train_data = data["train"].select(range(min(args.max_datasets_size, len(data["train"])))) - eval_data = data["test"].select(range(min(args.max_datasets_size, len(data["test"])))) - - if args.dataset == "Dahoas/rm-static": - train_dataset = RmStaticDataset(train_data, tokenizer, args.max_len) - eval_dataset = RmStaticDataset(eval_data, tokenizer, args.max_len) - elif args.dataset == "Anthropic/hh-rlhf": - train_dataset = HhRlhfDataset(train_data, tokenizer, args.max_len) - eval_dataset = HhRlhfDataset(eval_data, tokenizer, args.max_len) - else: - raise ValueError(f'Unsupported dataset "{args.dataset}"') - - if dist.is_initialized() and dist.get_world_size() > 1: - train_sampler = DistributedSampler( - train_dataset, - shuffle=True, - seed=42, - drop_last=True, - rank=dist.get_rank(), - num_replicas=dist.get_world_size(), - ) - eval_sampler = DistributedSampler( - eval_dataset, - shuffle=True, - seed=42, - drop_last=True, - rank=dist.get_rank(), - num_replicas=dist.get_world_size(), - ) - else: - train_sampler = None - eval_sampler = None - - train_dataloader = DataLoader( - train_dataset, - shuffle=(train_sampler is None), - sampler=train_sampler, - batch_size=args.batch_size, - pin_memory=True, - ) - - eval_dataloader = DataLoader( - eval_dataset, shuffle=(eval_sampler is None), sampler=eval_sampler, batch_size=args.batch_size, pin_memory=True - ) - - lr_scheduler = CosineAnnealingLR(optim, train_dataloader.__len__() // 100) - strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler)) - model = strategy_dict["model"] - optim = strategy_dict["optimizer"] - lr_scheduler = strategy_dict["lr_scheduler"] - trainer = RewardModelTrainer( - model=model, - strategy=strategy, - optim=optim, - lr_scheduler=lr_scheduler, - loss_fn=loss_fn, - max_epochs=args.max_epochs, - ) - - trainer.fit( - train_dataloader=train_dataloader, - eval_dataloader=eval_dataloader, - log_dir=args.log_dir, - use_wandb=args.use_wandb, - ) - - if args.lora_rank > 0 and args.merge_lora_weights: - from coati.models.lora import LORA_MANAGER - - # NOTE: set model to eval to merge LoRA weights - LORA_MANAGER.merge_weights = True - model.eval() - # save model checkpoint after fitting on only rank0 - state_dict = model.state_dict() - torch.save(state_dict, args.save_path) - # save optimizer checkpoint on all ranks - if args.need_optim_ckpt: - strategy.save_optimizer( - trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False - ) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument( - "--strategy", choices=["ddp", "colossalai_gemini", "colossalai_zero2"], default="colossalai_zero2" - ) - parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama"], default="bloom") - parser.add_argument("--tokenizer", type=str, default=None) - parser.add_argument("--pretrain", type=str, default=None) - parser.add_argument("--model_path", type=str, default=None) - parser.add_argument("--need_optim_ckpt", type=bool, default=False) - parser.add_argument( - "--dataset", type=str, choices=["Anthropic/hh-rlhf", "Dahoas/rm-static"], default="Dahoas/rm-static" - ) - parser.add_argument("--subset", type=lambda x: None if x == "None" else x, default=None) - parser.add_argument("--max_datasets_size", type=int, default=1000000) - parser.add_argument("--save_path", type=str, default="rm_ckpt") - parser.add_argument("--max_epochs", type=int, default=1) - parser.add_argument("--batch_size", type=int, default=1) - parser.add_argument("--max_len", type=int, default=512) - parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") - parser.add_argument("--merge_lora_weights", type=bool, default=True) - parser.add_argument("--lr", type=float, default=9e-6) - parser.add_argument("--loss_fn", type=str, default="log_sig", choices=["log_sig", "log_exp"]) - parser.add_argument("--log_dir", default="logs", type=str) - parser.add_argument("--use_wandb", default=False, action="store_true") - args = parser.parse_args() - train(args) diff --git a/applications/Chat/examples/train_rm.sh b/applications/Chat/examples/train_rm.sh deleted file mode 100755 index c5ebaf708..000000000 --- a/applications/Chat/examples/train_rm.sh +++ /dev/null @@ -1,25 +0,0 @@ -set_n_least_used_CUDA_VISIBLE_DEVICES() { - local n=${1:-"9999"} - echo "GPU Memory Usage:" - local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | - tail -n +2 | - nl -v 0 | - tee /dev/tty | - sort -g -k 2 | - awk '{print $1}' | - head -n $n) - export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') - echo "Now CUDA_VISIBLE_DEVICES is set to:" - echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" -} - -set_n_least_used_CUDA_VISIBLE_DEVICES 2 - -torchrun --standalone --nproc_per_node=2 train_reward_model.py \ - --pretrain 'gpt2' \ - --model 'gpt2' \ - --strategy colossalai_zero2 \ - --loss_fn 'log_exp' \ - --dataset 'Anthropic/hh-rlhf' \ - --batch_size 16 \ - --max_epochs 10 diff --git a/applications/Chat/examples/train_sft.py b/applications/Chat/examples/train_sft.py deleted file mode 100644 index d00c04809..000000000 --- a/applications/Chat/examples/train_sft.py +++ /dev/null @@ -1,221 +0,0 @@ -import argparse -import math -import warnings - -import torch -import torch.distributed as dist -from coati.dataset import SFTDataset, SupervisedDataset -from coati.models.bloom import BLOOMActor -from coati.models.chatglm import ChatGLMActor -from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer -from coati.models.gpt import GPTActor -from coati.models.llama import LlamaActor -from coati.models.opt import OPTActor -from coati.trainer import SFTTrainer -from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy -from datasets import load_dataset -from torch.optim import Adam -from torch.utils.data import DataLoader -from torch.utils.data.distributed import DistributedSampler -from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer -from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer -from transformers.trainer import get_scheduler - -from colossalai.logging import get_dist_logger -from colossalai.nn.optimizer import HybridAdam - - -def train(args): - # configure strategy - if args.strategy == "ddp": - strategy = DDPStrategy() - elif args.strategy == "colossalai_gemini": - strategy = GeminiStrategy(placement_policy="auto") - elif args.strategy == "colossalai_zero2": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda") - elif args.strategy == "colossalai_zero2_cpu": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu") - else: - raise ValueError(f'Unsupported strategy "{args.strategy}"') - - # configure model - if args.lora_rank > 0: - warnings.warn("Lora is not supported yet.") - args.lora_rank = 0 - - with strategy.model_init_context(): - if args.model == "bloom": - model = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint) - elif args.model == "opt": - model = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint) - elif args.model == "gpt2": - model = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint) - elif args.model == "llama": - model = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint) - elif args.model == "chatglm": - model = ChatGLMActor(pretrained=args.pretrain) - else: - raise ValueError(f'Unsupported model "{args.model}"') - - model.to(torch.bfloat16).to(torch.cuda.current_device()) - - # configure tokenizer - if args.model == "gpt2": - tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "bloom": - tokenizer = BloomTokenizerFast.from_pretrained( - "bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer - ) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "opt": - tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer) - tokenizer.pad_token = tokenizer.eos_token - elif args.model == "llama": - tokenizer = LlamaTokenizer.from_pretrained( - "hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer - ) - tokenizer.eos_token = "" - tokenizer.pad_token = tokenizer.unk_token - elif args.model == "chatglm": - tokenizer = ChatGLMTokenizer.from_pretrained( - "THUDM/chatglm-6b" if args.tokenizer is None else args.tokenizer, trust_remote_code=True - ) - else: - raise ValueError(f'Unsupported model "{args.model}"') - - # configure optimizer - if args.strategy.startswith("colossalai"): - optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0) - else: - optim = Adam(model.parameters(), lr=args.lr) - - # configure dataset - if args.dataset == "yizhongw/self_instruct": - train_data = load_dataset(args.dataset, "super_natural_instructions", split="train") - eval_data = load_dataset(args.dataset, "super_natural_instructions", split="test") - - if args.max_datasets_size is not None: - train_data = train_data.select(range(min(args.max_datasets_size, len(train_data)))) - eval_data = eval_data.select(range(min(args.max_datasets_size, len(eval_data)))) - - train_dataset = SFTDataset(train_data, tokenizer, args.max_len) - eval_dataset = SFTDataset(eval_data, tokenizer, args.max_len) - - else: - train_dataset = SupervisedDataset( - tokenizer=tokenizer, - data_path=args.dataset, - max_datasets_size=args.max_datasets_size, - max_length=args.max_len, - ) - eval_dataset = None - - if dist.is_initialized() and dist.get_world_size() > 1: - train_sampler = DistributedSampler( - train_dataset, - shuffle=True, - seed=42, - drop_last=True, - rank=dist.get_rank(), - num_replicas=dist.get_world_size(), - ) - if eval_dataset is not None: - eval_sampler = DistributedSampler( - eval_dataset, - shuffle=False, - seed=42, - drop_last=False, - rank=dist.get_rank(), - num_replicas=dist.get_world_size(), - ) - else: - train_sampler = None - eval_sampler = None - - train_dataloader = DataLoader( - train_dataset, - shuffle=(train_sampler is None), - sampler=train_sampler, - batch_size=args.batch_size, - pin_memory=True, - ) - if eval_dataset is not None: - eval_dataloader = DataLoader( - eval_dataset, - shuffle=(eval_sampler is None), - sampler=eval_sampler, - batch_size=args.batch_size, - pin_memory=True, - ) - else: - eval_dataloader = None - - num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps - max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch) - lr_scheduler = get_scheduler( - "cosine", optim, num_warmup_steps=math.ceil(max_steps * 0.03), num_training_steps=max_steps - ) - strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler)) - model = strategy_dict["model"] - optim = strategy_dict["optimizer"] - lr_scheduler = strategy_dict["lr_scheduler"] - trainer = SFTTrainer( - model=model, - strategy=strategy, - optim=optim, - lr_scheduler=lr_scheduler, - max_epochs=args.max_epochs, - accumulation_steps=args.accumulation_steps, - ) - - logger = get_dist_logger() - trainer.fit( - train_dataloader=train_dataloader, - eval_dataloader=eval_dataloader, - logger=logger, - log_dir=args.log_dir, - use_wandb=args.use_wandb, - ) - - if args.lora_rank > 0 and args.merge_lora_weights: - from coati.models.lora import LORA_MANAGER - - # NOTE: set model to eval to merge LoRA weights - LORA_MANAGER.merge_weights = True - model.eval() - # save model checkpoint after fitting on only rank0 - strategy.save_pretrained(model, path=args.save_path, tokenizer=tokenizer) - # save optimizer checkpoint on all ranks - if args.need_optim_ckpt: - strategy.save_optimizer( - trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False - ) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument( - "--strategy", - choices=["ddp", "colossalai_gemini", "colossalai_zero2", "colossalai_zero2_cpu"], - default="colossalai_zero2", - ) - parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama", "chatglm"], default="bloom") - parser.add_argument("--tokenizer", type=str, default=None) - parser.add_argument("--pretrain", type=str, default=None) - parser.add_argument("--dataset", type=str, default=None) - parser.add_argument("--max_datasets_size", type=int, default=None) - parser.add_argument("--save_path", type=str, default="output") - parser.add_argument("--need_optim_ckpt", type=bool, default=False) - parser.add_argument("--max_epochs", type=int, default=3) - parser.add_argument("--batch_size", type=int, default=4) - parser.add_argument("--max_len", type=int, default=512) - parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") - parser.add_argument("--merge_lora_weights", type=bool, default=True) - parser.add_argument("--lr", type=float, default=5e-6) - parser.add_argument("--accumulation_steps", type=int, default=8) - parser.add_argument("--log_dir", default="logs", type=str) - parser.add_argument("--use_wandb", default=False, action="store_true") - parser.add_argument("--grad_checkpoint", default=False, action="store_true") - args = parser.parse_args() - train(args) diff --git a/applications/Chat/examples/train_sft.sh b/applications/Chat/examples/train_sft.sh deleted file mode 100755 index b7d176847..000000000 --- a/applications/Chat/examples/train_sft.sh +++ /dev/null @@ -1,28 +0,0 @@ -set_n_least_used_CUDA_VISIBLE_DEVICES() { - local n=${1:-"9999"} - echo "GPU Memory Usage:" - local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | - tail -n +2 | - nl -v 0 | - tee /dev/tty | - sort -g -k 2 | - awk '{print $1}' | - head -n $n) - export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') - echo "Now CUDA_VISIBLE_DEVICES is set to:" - echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" -} - -set_n_least_used_CUDA_VISIBLE_DEVICES 4 - -torchrun --standalone --nproc_per_node=4 train_sft.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy colossalai_zero2 \ - --save_path /path/to/Coati-7B \ - --dataset /path/to/data.json \ - --batch_size 4 \ - --accumulation_steps 8 \ - --lr 2e-5 \ - --max_datasets_size 512 \ - --max_epochs 1 \ No newline at end of file diff --git a/applications/Chat/inference/benchmark.py b/applications/Chat/inference/benchmark.py deleted file mode 100644 index dbb5490a6..000000000 --- a/applications/Chat/inference/benchmark.py +++ /dev/null @@ -1,141 +0,0 @@ -# Adapted from https://github.com/tloen/alpaca-lora/blob/main/generate.py - -import argparse -from time import time - -import torch -from coati.quant import llama_load_quant, low_resource_init -from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM - - -def generate_prompt(instruction, input=None): - if input: - return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. - -### Instruction: -{instruction} - -### Input: -{input} - -### Response:""" - else: - return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. - -### Instruction: -{instruction} - -### Response:""" - - -@torch.no_grad() -def evaluate( - model, - tokenizer, - instruction, - input=None, - temperature=0.1, - top_p=0.75, - top_k=40, - num_beams=4, - max_new_tokens=128, - **kwargs, -): - prompt = generate_prompt(instruction, input) - inputs = tokenizer(prompt, return_tensors="pt") - input_ids = inputs["input_ids"].cuda() - generation_config = GenerationConfig( - temperature=temperature, - top_p=top_p, - top_k=top_k, - num_beams=num_beams, - **kwargs, - ) - generation_output = model.generate( - input_ids=input_ids, - generation_config=generation_config, - return_dict_in_generate=True, - output_scores=True, - max_new_tokens=max_new_tokens, - do_sample=True, - ) - s = generation_output.sequences[0] - output = tokenizer.decode(s) - n_new_tokens = s.size(0) - input_ids.size(1) - return output.split("### Response:")[1].strip(), n_new_tokens - - -instructions = [ - "Tell me about alpacas.", - "Tell me about the president of Mexico in 2019.", - "Tell me about the king of France in 2019.", - "List all Canadian provinces in alphabetical order.", - "Write a Python program that prints the first 10 Fibonacci numbers.", - "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", - "Tell me five words that rhyme with 'shock'.", - "Translate the sentence 'I have no mouth but I must scream' into Spanish.", - "Count up from 1 to 500.", - # === - "How to play support in legends of league", - "Write a Python program that calculate Fibonacci numbers.", -] -inst = [instructions[0]] * 4 - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument( - "pretrained", - help="Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.", - ) - parser.add_argument( - "--quant", - choices=["8bit", "4bit"], - default=None, - help="Quantization mode. Default: None (no quantization, fp16).", - ) - parser.add_argument( - "--gptq_checkpoint", - default=None, - help="Path to GPTQ checkpoint. This is only useful when quantization mode is 4bit. Default: None.", - ) - parser.add_argument( - "--gptq_group_size", - type=int, - default=128, - help="Group size for GPTQ. This is only useful when quantization mode is 4bit. Default: 128.", - ) - args = parser.parse_args() - - if args.quant == "4bit": - assert args.gptq_checkpoint is not None, "Please specify a GPTQ checkpoint." - - tokenizer = AutoTokenizer.from_pretrained(args.pretrained) - - if args.quant == "4bit": - with low_resource_init(): - config = LlamaConfig.from_pretrained(args.pretrained) - model = LlamaForCausalLM(config) - model = llama_load_quant(model, args.gptq_checkpoint, 4, args.gptq_group_size) - model.cuda() - else: - model = LlamaForCausalLM.from_pretrained( - args.pretrained, - load_in_8bit=(args.quant == "8bit"), - torch_dtype=torch.float16, - device_map="auto", - ) - if args.quant != "8bit": - model.half() # seems to fix bugs for some users. - model.eval() - - total_tokens = 0 - start = time() - for instruction in instructions: - print(f"Instruction: {instruction}") - resp, tokens = evaluate(model, tokenizer, instruction, temperature=0.2, num_beams=1) - total_tokens += tokens - print(f"Response: {resp}") - print("\n----------------------------\n") - duration = time() - start - print(f"Total time: {duration:.3f} s, {total_tokens/duration:.3f} tokens/s") - print(f"Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB") diff --git a/applications/Chat/inference/tests/test_chat_prompt.py b/applications/Chat/inference/tests/test_chat_prompt.py deleted file mode 100644 index 9835e7189..000000000 --- a/applications/Chat/inference/tests/test_chat_prompt.py +++ /dev/null @@ -1,61 +0,0 @@ -import os - -from transformers import AutoTokenizer -from utils import ChatPromptProcessor, Dialogue - -CONTEXT = "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions." -tokenizer = AutoTokenizer.from_pretrained(os.environ["PRETRAINED_PATH"]) - -samples = [ - ( - [ - Dialogue( - instruction="Who is the best player in the history of NBA?", - response="The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1", - ), - Dialogue(instruction="continue this talk", response=""), - ], - 128, - "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\nWho is the best player in the history of NBA?\n\n### Response:\nThe best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1\n\n### Instruction:\ncontinue this talk\n\n### Response:\n", - ), - ( - [ - Dialogue( - instruction="Who is the best player in the history of NBA?", - response="The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1", - ), - Dialogue(instruction="continue this talk", response=""), - ], - 200, - "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\ncontinue this talk\n\n### Response:\n", - ), - ( - [ - Dialogue( - instruction="Who is the best player in the history of NBA?", - response="The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1", - ), - Dialogue(instruction="continue this talk", response=""), - ], - 211, - "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\ncontinue this\n\n### Response:\n", - ), - ( - [ - Dialogue(instruction="Who is the best player in the history of NBA?", response=""), - ], - 128, - "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\nWho is the best player in the history of NBA?\n\n### Response:\n", - ), -] - - -def test_chat_prompt_processor(): - processor = ChatPromptProcessor(tokenizer, CONTEXT, 256) - for history, max_new_tokens, result in samples: - prompt = processor.preprocess_prompt(history, max_new_tokens) - assert prompt == result - - -if __name__ == "__main__": - test_chat_prompt_processor() diff --git a/applications/Chat/inference/utils.py b/applications/Chat/inference/utils.py deleted file mode 100644 index af018adf6..000000000 --- a/applications/Chat/inference/utils.py +++ /dev/null @@ -1,209 +0,0 @@ -import json -import re -from threading import Lock -from typing import Any, Callable, Generator, List, Optional - -import jieba -import torch -import torch.distributed as dist -import torch.nn as nn -from pydantic import BaseModel, Field - -try: - from transformers.generation_logits_process import ( - LogitsProcessorList, - TemperatureLogitsWarper, - TopKLogitsWarper, - TopPLogitsWarper, - ) -except ImportError: - from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper - - -def prepare_logits_processor( - top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None -) -> LogitsProcessorList: - processor_list = LogitsProcessorList() - if temperature is not None and temperature != 1.0: - processor_list.append(TemperatureLogitsWarper(temperature)) - if top_k is not None and top_k != 0: - processor_list.append(TopKLogitsWarper(top_k)) - if top_p is not None and top_p < 1.0: - processor_list.append(TopPLogitsWarper(top_p)) - return processor_list - - -def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool: - if dist.is_initialized() and dist.get_world_size() > 1: - # consider DP - unfinished_sequences = unfinished_sequences.clone() - dist.all_reduce(unfinished_sequences) - return unfinished_sequences.max() == 0 - - -def sample_streamingly( - model: nn.Module, - input_ids: torch.Tensor, - max_generate_tokens: int, - early_stopping: bool = False, - eos_token_id: Optional[int] = None, - pad_token_id: Optional[int] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - temperature: Optional[float] = None, - prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, - update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, - **model_kwargs, -) -> Generator: - logits_processor = prepare_logits_processor(top_k, top_p, temperature) - unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) - - for _ in range(max_generate_tokens): - model_inputs = ( - prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {"input_ids": input_ids} - ) - outputs = model(**model_inputs) - - next_token_logits = outputs["logits"][:, -1, :] - # pre-process distribution - next_token_logits = logits_processor(input_ids, next_token_logits) - # sample - probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float) - next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) - - # finished sentences should have their next token be a padding token - if eos_token_id is not None: - if pad_token_id is None: - raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") - next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) - - yield next_tokens - - # update generated ids, model inputs for next step - input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) - if update_model_kwargs_fn is not None: - model_kwargs = update_model_kwargs_fn(outputs, **model_kwargs) - - # if eos_token was found in one sentence, set sentence to finished - if eos_token_id is not None: - unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long()) - - # stop when each sentence is finished if early_stopping=True - if early_stopping and _is_sequence_finished(unfinished_sequences): - break - - -def update_model_kwargs_fn(outputs: dict, **model_kwargs) -> dict: - if "past_key_values" in outputs: - model_kwargs["past"] = outputs["past_key_values"] - else: - model_kwargs["past"] = None - - # update token_type_ids with last value - if "token_type_ids" in model_kwargs: - token_type_ids = model_kwargs["token_type_ids"] - model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) - - # update attention mask - if "attention_mask" in model_kwargs: - attention_mask = model_kwargs["attention_mask"] - model_kwargs["attention_mask"] = torch.cat( - [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 - ) - - return model_kwargs - - -class Dialogue(BaseModel): - instruction: str = Field(min_length=1, example="Count up from 1 to 500.") - response: str = Field(example="") - - -def _format_dialogue(instruction: str, response: str = ""): - return f"\n\n### Instruction:\n{instruction}\n\n### Response:\n{response}" - - -STOP_PAT = re.compile(r"(###|instruction:).*", flags=(re.I | re.S)) - - -class ChatPromptProcessor: - SAFE_RESPONSE = "The input/response contains inappropriate content, please rephrase your prompt." - - def __init__(self, tokenizer, context: str, max_len: int = 2048, censored_words: List[str] = []): - self.tokenizer = tokenizer - self.context = context - self.max_len = max_len - self.censored_words = set([word.lower() for word in censored_words]) - # These will be initialized after the first call of preprocess_prompt() - self.context_len: Optional[int] = None - self.dialogue_placeholder_len: Optional[int] = None - - def preprocess_prompt(self, history: List[Dialogue], max_new_tokens: int) -> str: - if self.context_len is None: - self.context_len = len(self.tokenizer(self.context)["input_ids"]) - if self.dialogue_placeholder_len is None: - self.dialogue_placeholder_len = len( - self.tokenizer(_format_dialogue(""), add_special_tokens=False)["input_ids"] - ) - prompt = self.context - # the last dialogue must be in the prompt - last_dialogue = history.pop() - # the response of the last dialogue is empty - assert last_dialogue.response == "" - if ( - len(self.tokenizer(_format_dialogue(last_dialogue.instruction), add_special_tokens=False)["input_ids"]) - + max_new_tokens - + self.context_len - >= self.max_len - ): - # to avoid truncate placeholder, apply truncate to the original instruction - instruction_truncated = self.tokenizer( - last_dialogue.instruction, - add_special_tokens=False, - truncation=True, - max_length=(self.max_len - max_new_tokens - self.context_len - self.dialogue_placeholder_len), - )["input_ids"] - instruction_truncated = self.tokenizer.decode(instruction_truncated).lstrip() - prompt += _format_dialogue(instruction_truncated) - return prompt - - res_len = self.max_len - max_new_tokens - len(self.tokenizer(prompt)["input_ids"]) - - rows = [] - for dialogue in history[::-1]: - text = _format_dialogue(dialogue.instruction, dialogue.response) - cur_len = len(self.tokenizer(text, add_special_tokens=False)["input_ids"]) - if res_len - cur_len < 0: - break - res_len -= cur_len - rows.insert(0, text) - prompt += "".join(rows) + _format_dialogue(last_dialogue.instruction) - return prompt - - def postprocess_output(self, output: str) -> str: - output = STOP_PAT.sub("", output) - return output.strip() - - def has_censored_words(self, text: str) -> bool: - if len(self.censored_words) == 0: - return False - intersection = set(jieba.cut(text.lower())) & self.censored_words - return len(intersection) > 0 - - -class LockedIterator: - def __init__(self, it, lock: Lock) -> None: - self.lock = lock - self.it = iter(it) - - def __iter__(self): - return self - - def __next__(self): - with self.lock: - return next(self.it) - - -def load_json(path: str): - with open(path) as f: - return json.load(f) diff --git a/applications/Chat/requirements-test.txt b/applications/Chat/requirements-test.txt deleted file mode 100644 index 93d48bcb6..000000000 --- a/applications/Chat/requirements-test.txt +++ /dev/null @@ -1,2 +0,0 @@ -pytest -colossalai==0.3.3 diff --git a/applications/Chat/requirements.txt b/applications/Chat/requirements.txt deleted file mode 100644 index e56aaca0e..000000000 --- a/applications/Chat/requirements.txt +++ /dev/null @@ -1,14 +0,0 @@ -transformers>=4.20.1 -tqdm -datasets -loralib -colossalai==0.3.3 -torch<2.0.0, >=1.12.1 -langchain -tokenizers -fastapi -sse_starlette -wandb -sentencepiece -gpustat -tensorboard diff --git a/applications/Chat/tests/test_benchmarks.sh b/applications/Chat/tests/test_benchmarks.sh deleted file mode 100755 index 3fdb25181..000000000 --- a/applications/Chat/tests/test_benchmarks.sh +++ /dev/null @@ -1,33 +0,0 @@ -#!/bin/bash - -set -xue - -echo "Hint: You can run this script with 'verbose' as the first argument to run all strategies." - -if [[ $# -ne 0 && "$1" == "verbose" ]]; then - STRATEGIES=( - 'ddp' - 'colossalai_gemini' - 'colossalai_gemini_cpu' - 'colossalai_zero2' - 'colossalai_zero2_cpu' - 'colossalai_zero1' - 'colossalai_zero1_cpu' - ) -else - STRATEGIES=( - 'colossalai_zero2' - ) -fi - -BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) -BENCHMARKS_DIR=$BASE_DIR/benchmarks - -echo "[Test]: testing benchmarks ..." - -for strategy in ${STRATEGIES[@]}; do - torchrun --standalone --nproc_per_node 1 $BENCHMARKS_DIR/benchmark_opt_lora_dummy.py \ - --model 125m --critic_model 125m --strategy ${strategy} --lora_rank 4 \ - --num_episodes 2 --num_collect_steps 4 --num_update_steps 2 \ - --train_batch_size 2 --experience_batch_size 4 -done diff --git a/applications/Chat/tests/test_checkpoint.py b/applications/Chat/tests/test_checkpoint.py deleted file mode 100644 index 9c08aa36c..000000000 --- a/applications/Chat/tests/test_checkpoint.py +++ /dev/null @@ -1,91 +0,0 @@ -import os -import tempfile -from contextlib import nullcontext - -import pytest -import torch -import torch.distributed as dist -from coati.models.gpt import GPTActor -from coati.models.utils import calc_action_log_probs -from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy, Strategy -from transformers.models.gpt2.configuration_gpt2 import GPT2Config - -from colossalai.nn.optimizer import HybridAdam -from colossalai.testing import rerun_if_address_is_in_use, spawn - -GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4) - - -def get_data(batch_size: int, seq_len: int = 10) -> dict: - input_ids = torch.randint(0, 50257, (batch_size, seq_len), device="cuda") - attention_mask = torch.ones_like(input_ids) - return dict(input_ids=input_ids, attention_mask=attention_mask) - - -def train_step(strategy: Strategy, actor: GPTActor, actor_optim: HybridAdam, batch_size: int = 8): - data = get_data(batch_size) - action_mask = torch.ones_like(data["attention_mask"], dtype=torch.bool) - actor_logits = actor(data["input_ids"], data["attention_mask"])["logits"] - action_log_probs = calc_action_log_probs(actor_logits, data["input_ids"], action_mask.size(1)) - loss = action_log_probs.sum() - strategy.backward(loss, actor, actor_optim) - strategy.optimizer_step(actor_optim) - - -def run_test_checkpoint(strategy_name: str, shard: bool): - if strategy_name == "ddp": - strategy = DDPStrategy() - elif strategy_name == "colossalai_gemini": - strategy = GeminiStrategy(placement_policy="auto", initial_scale=2**5) - elif strategy_name == "colossalai_zero2": - strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda") - else: - raise ValueError(f"Unsupported strategy '{strategy_name}'") - - with strategy.model_init_context(): - actor = GPTActor(config=GPT_CONFIG).cuda() - actor_optim = HybridAdam(actor.parameters()) - actor, actor_optim = strategy.prepare((actor, actor_optim)) - - train_step(strategy, actor, actor_optim) - - ctx = tempfile.TemporaryDirectory() if dist.get_rank() == 0 else nullcontext() - - with ctx as dirname: - rank0_dirname = [dirname] - dist.broadcast_object_list(rank0_dirname) - rank0_dirname = rank0_dirname[0] - - model_path = os.path.join(rank0_dirname, "model" if shard else f"model.pt") - strategy.save_model(actor, model_path) - optim_path = os.path.join(rank0_dirname, "optim" if shard else "optim.pt") - strategy.save_optimizer(actor_optim, optim_path) - dist.barrier() - - strategy.load_model(actor, model_path, strict=False) - strategy.load_optimizer(actor_optim, optim_path) - dist.barrier() - - train_step(strategy, actor, actor_optim) - - -def run_dist(rank: int, world_size: int, port: int, strategy_name: str, shard: bool): - os.environ["RANK"] = str(rank) - os.environ["LOCAL_RANK"] = str(rank) - os.environ["WORLD_SIZE"] = str(world_size) - os.environ["MASTER_ADDR"] = "localhost" - os.environ["MASTER_PORT"] = str(port) - run_test_checkpoint(strategy_name, shard) - - -@pytest.mark.dist -@pytest.mark.parametrize("world_size", [4]) -@pytest.mark.parametrize("strategy_name", ["ddp", "colossalai_gemini", "colossalai_zero2"]) -@pytest.mark.parametrize("shard", [False, True]) -@rerun_if_address_is_in_use() -def test_checkpoint(world_size: int, strategy_name: str, shard: bool): - spawn(run_dist, world_size, strategy_name=strategy_name, shard=shard) - - -if __name__ == "__main__": - test_checkpoint(2, "colossalai_gemini", shard=False) diff --git a/applications/Chat/tests/test_dataset.py b/applications/Chat/tests/test_dataset.py deleted file mode 100644 index ec61bbb13..000000000 --- a/applications/Chat/tests/test_dataset.py +++ /dev/null @@ -1,241 +0,0 @@ -import json -import os -import tempfile -from typing import Optional - -import pytest -import torch -from coati.dataset.prompt_dataset import PromptDataset -from coati.dataset.reward_dataset import HhRlhfDataset, RmStaticDataset -from coati.dataset.sft_dataset import IGNORE_INDEX, SFTDataset, SupervisedDataset -from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer -from datasets import load_dataset -from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer, PreTrainedTokenizer -from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer - -SFT_DATASET = [ - { - "instruction": "Provide a list of the top 10 most popular mobile games in Asia", - "input": "", - "output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved", - "id": 0, - }, - { - "instruction": "Please provide an action plan for reducing carbon footprint on a corporate level", - "input": "", - "output": "An action plan for reducing carbon footprint on a corporate level could include switching to renewable energy sources (e.g., solar or wind powered), investing in energy efficient infrastructure, implementing green production practices (e.g., reduce water and paper usage, dispose of materials responsibly, recycle/reuse materials), reducing or eliminating travel, encouraging employees to be conscious of and reduce their own energy usage, and incentivizing employees to participate in sustainable work practices.", - "id": 1, - }, - { - "instruction": "Write a persuasive email to your boss explaining why you should have a pay raise", - "input": "", - "output": "Dear [Boss], \n\nI hope this message finds you well. I am writing to request a pay raise.\n\nAs you know, I have been a dedicated and hardworking member of the team since I started working here [insert number] of months/years ago. My enthusiasm and passion for my job has remained consistent over the years, and I have always given 100% to my role. \n\nI understand that the current financial situation is challenging, however, I would sincerely appreciate you taking the time to consider my request. I believe that my dedication to the job and the value that I bring to the organization warrants a raise. I work diligently and am confident that I can continue to be an asset to the company. \n\nI hope my request is taken into account and I thank you in advance for your understanding. I look forward to our conversation. \n\nSincerely,\n[Your Name]", - "id": 2, - }, -] - -PROMPT_DATASET = [ - { - "instruction": 'Edit this paragraph to make it more concise: "Yesterday, I went to the store and bought some things. Then, I came home and put them away. After that, I went for a walk and met some friends."', - "id": 0, - }, - {"instruction": "Write a descriptive paragraph about a memorable vacation you went on", "id": 1}, - {"instruction": "Write a persuasive essay arguing why homework should be banned in schools", "id": 2}, - {"instruction": "Create a chart comparing the statistics on student debt in the United States.", "id": 3}, -] - - -def make_tokenizer(model: str): - if model == "gpt2": - tokenizer = GPT2Tokenizer.from_pretrained("gpt2") - tokenizer.pad_token = tokenizer.eos_token - elif model == "bloom": - tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m") - tokenizer.pad_token = tokenizer.eos_token - elif model == "opt": - tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") - tokenizer.pad_token = tokenizer.eos_token - elif model == "llama": - tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") - tokenizer.pad_token = tokenizer.unk_token - elif model == "chatglm": - tokenizer = ChatGLMTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) - else: - raise ValueError(f"Unsupported model '{model}'") - return tokenizer - - -def check_content(input_ids_stripped: torch.Tensor, tokenizer: PreTrainedTokenizer, model: str): - if model == "opt": - # NOTE: Contrary to GPT2, OPT adds the EOS token to the beginning of every prompt. - assert input_ids_stripped[0] == tokenizer.eos_token_id - input_ids_stripped = input_ids_stripped[1:] - elif model == "llama": - assert input_ids_stripped[0] == tokenizer.bos_token_id - input_ids_stripped = input_ids_stripped[1:] - elif model == "chatglm": - assert input_ids_stripped[0] == tokenizer.bos_token_id - assert input_ids_stripped[-1] == tokenizer.eos_token_id - input_ids_stripped = input_ids_stripped[1:-1] - assert torch.all(input_ids_stripped != tokenizer.pad_token_id) - assert torch.all(input_ids_stripped != tokenizer.bos_token_id) - assert torch.all(input_ids_stripped != tokenizer.eos_token_id) - assert input_ids_stripped != tokenizer.sep_token_id - assert input_ids_stripped != tokenizer.cls_token_id - if model == "chatglm": - assert torch.all(input_ids_stripped != tokenizer.mask_token_id) - else: - assert input_ids_stripped != tokenizer.mask_token_id - - -@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama"]) -@pytest.mark.parametrize("max_length", [32, 1024]) -@pytest.mark.parametrize("max_datasets_size", [2]) -def test_prompt_dataset(model: str, max_datasets_size: int, max_length: int): - with tempfile.TemporaryDirectory() as tmp_dir: - dataset_name = "prompt_dataset.json" - with open(os.path.join(tmp_dir, dataset_name), "w") as f: - json.dump(PROMPT_DATASET, f) - tokenizer = make_tokenizer(model) - assert tokenizer.padding_side in ("left", "right") - prompt_dataset = PromptDataset( - data_path=os.path.join(tmp_dir, dataset_name), - tokenizer=tokenizer, - max_datasets_size=max_datasets_size, - max_length=max_length, - ) - assert len(prompt_dataset) == min(max_datasets_size, len(PROMPT_DATASET)) - for i in range(len(prompt_dataset)): - assert isinstance(prompt_dataset[i], dict) - assert list(prompt_dataset[i].keys()) == ["input_ids", "attention_mask"] - input_ids = prompt_dataset[i]["input_ids"] - attention_mask = prompt_dataset[i]["attention_mask"] - attention_mask = attention_mask.bool() - assert input_ids.shape == attention_mask.shape == torch.Size([max_length]) - assert torch.all(input_ids[torch.logical_not(attention_mask)] == tokenizer.pad_token_id) - check_content(input_ids.masked_select(attention_mask), tokenizer, model) - - -@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama"]) -@pytest.mark.parametrize( - ["dataset_path", "subset"], [("Anthropic/hh-rlhf", "harmless-base"), ("Dahoas/rm-static", None)] -) -@pytest.mark.parametrize("max_datasets_size", [32]) -@pytest.mark.parametrize("max_length", [32, 1024]) -def test_reward_dataset(model: str, dataset_path: str, subset: Optional[str], max_datasets_size: int, max_length: int): - data = load_dataset(dataset_path, data_dir=subset) - assert max_datasets_size <= len(data["train"]) and max_datasets_size <= len(data["test"]) - train_data = data["train"].select(range(max_datasets_size)) - test_data = data["test"].select(range(max_datasets_size)) - tokenizer = make_tokenizer(model) - assert tokenizer.padding_side in ("left", "right") - - if dataset_path == "Anthropic/hh-rlhf": - train_dataset = HhRlhfDataset(train_data, tokenizer, max_length) - test_dataset = HhRlhfDataset(test_data, tokenizer, max_length) - elif dataset_path == "Dahoas/rm-static": - train_dataset = RmStaticDataset(train_data, tokenizer, max_length) - test_dataset = RmStaticDataset(test_data, tokenizer, max_length) - else: - raise ValueError(f'Unsupported dataset "{dataset_path}"') - - assert len(train_dataset) == len(test_dataset) == max_datasets_size - for i in range(max_datasets_size): - chosen_ids, c_mask, reject_ids, r_mask = train_dataset[i] - assert chosen_ids.shape == c_mask.shape == reject_ids.shape == r_mask.shape == torch.Size([max_length]) - c_mask = c_mask.to(torch.bool) - r_mask = r_mask.to(torch.bool) - if chosen_ids.masked_select(c_mask)[-1] == tokenizer.eos_token_id: - check_content(chosen_ids.masked_select(c_mask)[:-1], tokenizer, model) - assert torch.all(chosen_ids.masked_select(torch.logical_not(c_mask)) == tokenizer.pad_token_id) - else: - check_content(chosen_ids.masked_select(c_mask), tokenizer, model) - assert torch.all(c_mask) - if reject_ids.masked_select(r_mask)[-1] == tokenizer.eos_token_id: - check_content(reject_ids.masked_select(r_mask)[:-1], tokenizer, model) - assert torch.all(reject_ids.masked_select(torch.logical_not(r_mask)) == tokenizer.pad_token_id) - else: - check_content(reject_ids.masked_select(r_mask), tokenizer, model) - assert torch.all(r_mask) - - chosen_ids, c_mask, reject_ids, r_mask = test_dataset[i] - assert chosen_ids.shape == c_mask.shape == reject_ids.shape == r_mask.shape == torch.Size([max_length]) - c_mask = c_mask.to(torch.bool) - r_mask = r_mask.to(torch.bool) - if chosen_ids.masked_select(c_mask)[-1] == tokenizer.eos_token_id: - check_content(chosen_ids.masked_select(c_mask)[:-1], tokenizer, model) - assert torch.all(chosen_ids.masked_select(torch.logical_not(c_mask)) == tokenizer.pad_token_id) - else: - check_content(chosen_ids.masked_select(c_mask), tokenizer, model) - assert torch.all(c_mask) - if reject_ids.masked_select(r_mask)[-1] == tokenizer.eos_token_id: - check_content(reject_ids.masked_select(r_mask)[:-1], tokenizer, model) - assert torch.all(reject_ids.masked_select(torch.logical_not(r_mask)) == tokenizer.pad_token_id) - else: - check_content(reject_ids.masked_select(r_mask), tokenizer, model) - assert torch.all(r_mask) - - -@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama", "chatglm"]) -@pytest.mark.parametrize("dataset_path", ["yizhongw/self_instruct", None]) -@pytest.mark.parametrize("max_dataset_size", [2]) -@pytest.mark.parametrize("max_length", [32, 1024]) -def test_sft_dataset(model: str, dataset_path: Optional[str], max_dataset_size: int, max_length: int): - tokenizer = make_tokenizer(model) - if dataset_path == "yizhongw/self_instruct": - data = load_dataset(dataset_path, "super_natural_instructions") - train_data = data["train"].select(range(max_dataset_size)) - sft_dataset = SFTDataset(train_data, tokenizer, max_length) - else: - with tempfile.TemporaryDirectory() as tmp_dir: - dataset_name = "sft_dataset.json" - with open(os.path.join(tmp_dir, dataset_name), "w") as f: - json.dump(SFT_DATASET, f) - sft_dataset = SupervisedDataset( - tokenizer=tokenizer, - data_path=os.path.join(tmp_dir, dataset_name), - max_datasets_size=max_dataset_size, - max_length=max_length, - ) - assert len(sft_dataset) == min(max_dataset_size, len(SFT_DATASET)) - - if isinstance(tokenizer, ChatGLMTokenizer): - for i in range(max_dataset_size): - assert isinstance(sft_dataset[i], dict) - assert list(sft_dataset[i].keys()) == ["input_ids", "labels"] - input_ids = sft_dataset[i]["input_ids"] - labels = sft_dataset[i]["labels"] - assert input_ids.shape == labels.shape == torch.Size([max_length]) - - ignore_mask = labels == IGNORE_INDEX - assert input_ids.masked_select(torch.logical_not(ignore_mask))[0] == tokenizer.bos_token_id - check_content(input_ids.masked_select(torch.logical_not(ignore_mask)), tokenizer, model) - return - - for i in range(max_dataset_size): - assert isinstance(sft_dataset[i], dict) - assert list(sft_dataset[i].keys()) == ["input_ids", "labels", "attention_mask"] - input_ids = sft_dataset[i]["input_ids"] - labels = sft_dataset[i]["labels"] - attention_mask = sft_dataset[i]["attention_mask"].to(torch.bool) - assert input_ids.shape == labels.shape == attention_mask.shape == torch.Size([max_length]) - if input_ids.masked_select(attention_mask)[-1] == tokenizer.eos_token_id: - check_content(input_ids.masked_select(attention_mask)[:-1], tokenizer, model) - assert torch.all(input_ids.masked_select(torch.logical_not(attention_mask)) == tokenizer.pad_token_id) - else: - check_content(input_ids.masked_select(attention_mask), tokenizer, model) - assert torch.all(attention_mask) - ignore_mask = labels == IGNORE_INDEX - prompt_mask = torch.logical_and(ignore_mask, attention_mask) - check_content(input_ids.masked_select(prompt_mask), tokenizer, model) - assert torch.all(input_ids.masked_select(ignore_mask ^ prompt_mask) == tokenizer.pad_token_id) - - -if __name__ == "__main__": - test_sft_dataset(model="bloom", dataset_path="yizhongw/self_instruct", max_dataset_size=2, max_length=256) - - test_reward_dataset( - model="gpt2", dataset_path="Anthropic/hh-rlhf", subset="harmless-base", max_datasets_size=8, max_length=256 - ) - - test_prompt_dataset(model="opt", max_datasets_size=2, max_length=128) diff --git a/applications/Chat/tests/test_experience.py b/applications/Chat/tests/test_experience.py deleted file mode 100644 index a95912598..000000000 --- a/applications/Chat/tests/test_experience.py +++ /dev/null @@ -1,130 +0,0 @@ -import copy -import os - -import pytest -import torch -import torch.distributed as dist -from coati.experience_buffer import NaiveExperienceBuffer -from coati.experience_maker import NaiveExperienceMaker -from coati.models.base import RewardModel -from coati.models.gpt import GPTActor, GPTCritic -from coati.trainer.ppo import _set_default_generate_kwargs -from coati.trainer.strategies import DDPStrategy, GeminiStrategy -from coati.trainer.strategies.colossalai import LowLevelZeroStrategy -from transformers.models.gpt2.configuration_gpt2 import GPT2Config - -from colossalai.testing import rerun_if_address_is_in_use, spawn - -GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4) - - -def get_data(batch_size: int, seq_len: int = 10) -> dict: - input_ids = torch.randint(0, 50257, (batch_size, seq_len), device="cuda") - attention_mask = torch.ones_like(input_ids) - return dict(input_ids=input_ids, attention_mask=attention_mask) - - -def gather_and_equal(tensor: torch.Tensor) -> bool: - world_size = dist.get_world_size() - outputs = [torch.empty_like(tensor) for _ in range(world_size)] - dist.all_gather(outputs, tensor.contiguous()) - for t in outputs[1:]: - if not torch.equal(outputs[0], t): - return False - return True - - -def make_and_consume_experience(strategy): - EXPERIENCE_BATCH_SIZE = 4 - SAMPLE_BATCH_SIZE = 2 - - if strategy == "ddp": - strategy = DDPStrategy() - elif strategy == "colossalai-zero2": - strategy = LowLevelZeroStrategy() - elif strategy == "colossalai-gemini": - strategy = GeminiStrategy(placement_policy="static") - else: - raise ValueError(f'Unsupported strategy "{strategy}"') - - with strategy.model_init_context(): - actor = GPTActor(config=GPT_CONFIG).cuda() - critic = GPTCritic(config=GPT_CONFIG).cuda() - - initial_model = GPTActor(config=GPT_CONFIG).cuda() - reward_model = RewardModel(model=copy.deepcopy(critic.model)).cuda() - - actor, critic, initial_model, reward_model = strategy.prepare(actor, critic, initial_model, reward_model) - - class MockTokenizer: - def __init__(self): - self.padding_side = "left" - self.eos_token_id = 0 - self.pad_token_id = 0 - - tokenizer = MockTokenizer() - experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, tokenizer) - data_buffer = NaiveExperienceBuffer(SAMPLE_BATCH_SIZE, cpu_offload=False) - - generate_kwargs = dict(do_sample=True, max_length=16) - generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor) - - # experience of all ranks should be the same - for _ in range(2): - data = get_data(EXPERIENCE_BATCH_SIZE) - assert gather_and_equal(data["input_ids"]) - assert gather_and_equal(data["attention_mask"]) - experience = experience_maker.make_experience(**data, do_sample=True, max_length=16) - assert gather_and_equal(experience.sequences) - assert gather_and_equal(experience.action_log_probs) - assert gather_and_equal(experience.values) - assert gather_and_equal(experience.reward) - assert gather_and_equal(experience.advantages) - assert gather_and_equal(experience.action_mask) - assert gather_and_equal(experience.attention_mask) - data_buffer.append(experience) - - # data buffer's data should be the same - buffer_size = torch.tensor([len(data_buffer)], device="cuda") - assert gather_and_equal(buffer_size) - for item in data_buffer.items: - assert gather_and_equal(item.sequences) - assert gather_and_equal(item.action_log_probs) - assert gather_and_equal(item.values) - assert gather_and_equal(item.reward) - assert gather_and_equal(item.advantages) - assert gather_and_equal(item.action_mask) - assert gather_and_equal(item.attention_mask) - - # dataloader of each rank should have the same size and different batch - dataloader = strategy.setup_dataloader(data_buffer) - dataloader_size = torch.tensor([len(dataloader)], device="cuda") - assert gather_and_equal(dataloader_size) - for experience in dataloader: - assert not gather_and_equal(experience.sequences) - assert not gather_and_equal(experience.action_log_probs) - assert not gather_and_equal(experience.values) - assert not gather_and_equal(experience.reward) - assert not gather_and_equal(experience.advantages) - # action mask and attention mask may be same - - -def run_dist(rank, world_size, port, strategy): - os.environ["RANK"] = str(rank) - os.environ["LOCAL_RANK"] = str(rank) - os.environ["WORLD_SIZE"] = str(world_size) - os.environ["MASTER_ADDR"] = "localhost" - os.environ["MASTER_PORT"] = str(port) - make_and_consume_experience(strategy) - - -@pytest.mark.dist -@pytest.mark.parametrize("world_size", [2]) -@pytest.mark.parametrize("strategy", ["ddp", "colossalai-zero2", "colossalai-gemini"]) -@rerun_if_address_is_in_use() -def test_experience(world_size, strategy): - spawn(run_dist, world_size, strategy=strategy) - - -if __name__ == "__main__": - test_experience(2, "colossalai-zero2") diff --git a/applications/Chat/tests/test_inference.sh b/applications/Chat/tests/test_inference.sh deleted file mode 100755 index 849db06e5..000000000 --- a/applications/Chat/tests/test_inference.sh +++ /dev/null @@ -1,11 +0,0 @@ -set -xue - -BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) -EXAMPLES_DIR=$BASE_DIR/examples - -echo "[Test]: testing inference ..." - -# HACK: skip llama due to oom -for model in 'gpt2' 'bloom' 'opt'; do - python $EXAMPLES_DIR/inference.py --model $model -done diff --git a/applications/Chat/tests/test_models.py b/applications/Chat/tests/test_models.py deleted file mode 100644 index b2c22ac6a..000000000 --- a/applications/Chat/tests/test_models.py +++ /dev/null @@ -1,245 +0,0 @@ -import copy -from typing import Any, Callable, Dict, Tuple - -import pytest -import torch -import torch.nn as nn -from coati.models.base import Actor, Critic, RewardModel, get_base_model -from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic -from coati.models.chatglm import ChatGLMActor -from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer -from coati.models.generation import generate -from coati.models.gpt import GPTRM, GPTActor, GPTCritic -from coati.models.llama import LlamaActor -from coati.models.lora import LoraLinear, convert_to_lora_module -from coati.models.loss import GPTLMLoss, LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss -from coati.models.opt import OPTRM, OPTActor, OPTCritic -from coati.models.utils import calc_action_log_probs, masked_mean - - -@pytest.mark.parametrize("batch_size", [4]) -@pytest.mark.parametrize("seq_len", [32]) -@pytest.mark.parametrize( - "actor_maker", - [ - lambda: BLOOMActor(), - lambda: GPTActor(), - # HACK: skip llama due to long execution time - # lambda: LlamaActor(), - lambda: OPTActor(), - ], -) -@pytest.mark.parametrize( - "generate_kwargs", - [ - { - "max_length": 64, - "use_cache": True, - "do_sample": True, - "temperature": 1.0, - "top_k": 50, - } - ], -) -def test_generation(actor_maker: Callable[[], Actor], batch_size: int, seq_len: int, generate_kwargs: Dict[str, Any]): - class MockTokenizer: - def __init__(self): - self.padding_side = "left" - self.eos_token_id = 0 - self.pad_token_id = 0 - - actor = actor_maker() - input_ids = torch.randint(0, 100, (batch_size, seq_len)).cuda() - tokenizer = MockTokenizer() - sequences = generate(actor.cuda(), input_ids, tokenizer, **generate_kwargs) - assert sequences.shape == (batch_size, generate_kwargs["max_length"]) - - -def test_utils(): - fn_input = {"tensor": torch.ones((10,)), "mask": torch.randint(0, 2, (10,))} - fn_output = masked_mean(dim=0, **fn_input) - assert fn_output.dim() == 0 - assert torch.allclose(fn_output, torch.tensor(1.0)) - - batch_size = 4 - seq_len = 32 - num_labels = 10 - num_actions = 2 - fn_input = { - "logits": torch.randn((batch_size, seq_len, num_labels)), - "sequences": torch.randint(0, num_labels, (batch_size, seq_len)), - "num_actions": num_actions, - } - fn_output = calc_action_log_probs(**fn_input) - assert fn_output.shape == (batch_size, num_actions) - - -@pytest.mark.parametrize("lora_rank", [4]) -@pytest.mark.parametrize("num_dim", [32]) -@pytest.mark.parametrize("num_layers", [4]) -def test_lora(lora_rank: int, num_dim: int, num_layers: int): - model = nn.ModuleList([nn.Linear(num_dim, num_dim) for _ in range(num_layers)]) - lora_model = convert_to_lora_module(model, lora_rank) - assert isinstance(lora_model, nn.ModuleList) - for i in range(num_layers): - assert isinstance(lora_model[i], LoraLinear) - assert lora_model[i].lora_A.shape == (lora_rank, num_dim) - assert lora_model[i].lora_B.shape == (num_dim, lora_rank) - - old_model = copy.deepcopy(lora_model) - for i in range(num_layers): - assert isinstance(lora_model[i], LoraLinear) - assert torch.allclose(old_model[i].weight, lora_model[i].weight) - assert torch.allclose(old_model[i].bias, lora_model[i].bias) - assert torch.allclose(old_model[i].lora_B @ old_model[i].lora_A, lora_model[i].lora_B @ lora_model[i].lora_A) - optimizer = torch.optim.Adam(lora_model.parameters()) - x = torch.randn(8, num_dim) - for i in range(num_layers): - x = lora_model[i](x) - loss = x.sum() - loss.backward() - optimizer.step() - for i in range(num_layers): - assert isinstance(lora_model[i], LoraLinear) - assert torch.allclose(old_model[i].weight, lora_model[i].weight) - assert torch.allclose(old_model[i].bias, lora_model[i].bias) - assert not torch.allclose( - old_model[i].lora_B @ old_model[i].lora_A, lora_model[i].lora_B @ lora_model[i].lora_A - ) - - -@pytest.mark.parametrize("batch_size", [8]) -@pytest.mark.parametrize("seq_len", [128]) -@pytest.mark.parametrize( - "models_maker", - [ - lambda: (BLOOMActor(), BLOOMCritic(), BLOOMRM()), - lambda: (GPTActor(), GPTCritic(), GPTRM()), - # HACK: skip llama due to long execution time - # lambda: (LlamaActor(), LlamaCritic(), LlamaRM()), - lambda: (OPTActor(), OPTCritic(), OPTRM()), - lambda: (ChatGLMActor(), None, None), - ], -) -@torch.no_grad() -def test_models(models_maker: Callable[[], Tuple[Actor, Critic, RewardModel]], batch_size: int, seq_len: int): - actor_input = { - "input_ids": torch.randint(0, 100, (batch_size, seq_len)), - "attention_mask": torch.randint(0, 2, (batch_size, seq_len)), - } - critic_input = { - "sequences": torch.randint(0, 100, (batch_size, seq_len)), - "attention_mask": torch.randint(0, 2, (batch_size, seq_len)), - } - rm_input = { - "sequences": torch.randint(0, 100, (batch_size, seq_len)), - "attention_mask": torch.randint(0, 2, (batch_size, seq_len)), - } - - actor, critic, rm = models_maker() - if isinstance(actor, ChatGLMActor): - actor = actor.float() - tokenizer = ChatGLMTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) - chatglm_special_token = torch.tensor([tokenizer.gmask_token_id, tokenizer.bos_token_id]).repeat(batch_size, 1) - actor_input = { - "input_ids": torch.cat( - ( - torch.randint(0, 100, (batch_size, seq_len // 2)), - chatglm_special_token, - torch.randint(0, 100, (batch_size, seq_len // 2 - 2)), - ), - dim=1, - ), - "attention_mask": torch.randint(0, 2, (batch_size, 1, seq_len, seq_len)), - } - assert isinstance(actor, Actor) - get_base_model(actor) - actor_output = actor(**actor_input) - assert actor_output.logits.shape[:2] == (batch_size, seq_len) - - if critic: - assert isinstance(critic, Critic) - get_base_model(critic) - critic_output = critic(**critic_input) - assert critic_output.shape == (batch_size,) - - if rm: - assert isinstance(rm, RewardModel) - get_base_model(rm) - rm_output = rm(**rm_input) - assert rm_output.shape == (batch_size,) - - -@pytest.mark.parametrize("batch_size", [16]) -@pytest.mark.parametrize("seq_len", [128]) -@pytest.mark.parametrize("num_labels", [100]) -def test_loss(batch_size: int, seq_len: int, num_labels: int): - loss = GPTLMLoss() - loss_input = { - "logits": torch.randn(batch_size, seq_len, num_labels), - "labels": torch.randint(0, num_labels, (batch_size, seq_len)), - } - loss(**loss_input) - - loss = PolicyLoss() - loss_input = { - "log_probs": torch.randn( - batch_size, - ), - "old_log_probs": torch.randn( - batch_size, - ), - "advantages": torch.randn( - batch_size, - ), - } - loss(**loss_input) - - loss = ValueLoss() - loss_input = { - "values": torch.randn( - batch_size, - ), - "old_values": torch.randn( - batch_size, - ), - "reward": torch.randn( - batch_size, - ), - } - loss(**loss_input) - - loss = LogSigLoss() - loss_input = { - "chosen_reward": torch.randn( - batch_size, - ), - "reject_reward": torch.randn( - batch_size, - ), - } - loss(**loss_input) - - loss = LogExpLoss() - loss_input = { - "chosen_reward": torch.randn( - batch_size, - ), - "reject_reward": torch.randn( - batch_size, - ), - } - loss(**loss_input) - - -if __name__ == "__main__": - generate_kwargs = dict(max_length=40, use_cache=True, do_sample=True, temperature=1.0, top_k=50) - test_generation(lambda: LlamaActor(), batch_size=4, seq_len=32, generate_kwargs=generate_kwargs) - - test_utils() - - test_lora(lora_rank=2, num_dim=8, num_layers=2) - - test_models(models_maker=lambda: (BLOOMActor(), BLOOMCritic(), BLOOMRM()), batch_size=8, seq_len=128) - - test_loss(batch_size=8, seq_len=128, num_labels=100) diff --git a/applications/Chat/tests/test_train.sh b/applications/Chat/tests/test_train.sh deleted file mode 100755 index 68fca7fbf..000000000 --- a/applications/Chat/tests/test_train.sh +++ /dev/null @@ -1,233 +0,0 @@ -#!/usr/bin/env bash - -set_n_least_used_CUDA_VISIBLE_DEVICES() { - local n=${1:-"9999"} - echo "GPU Memory Usage:" - local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | - tail -n +2 | - nl -v 0 | - tee /dev/tty | - sort -g -k 2 | - awk '{print $1}' | - head -n $n) - export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') - echo "Now CUDA_VISIBLE_DEVICES is set to:" - echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" -} - -set_n_least_used_CUDA_VISIBLE_DEVICES 4 - -set -xu - -if [ -z "$SFT_DATASET" ]; then - echo "Please set \$SFT_DATASET to the path to sft dataset." - exit 1 -fi - -if [ -z "$PROMPT_DATASET" ]; then - echo "Please set \$PROMPT_DATASET to the path to prompts csv." - exit 1 -fi - -if [ -z "$PRETRAIN_DATASET" ]; then - echo "Please set \$PRETRAIN_DATASET to the path to alpaca data." - exit 1 -fi - -NUM_RETRY=3 -BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) -EXAMPLES_DIR=$BASE_DIR/examples -MODELS_DIR=$BASE_DIR/examples/models_config -MODELS=('gpt2' 'bloom' 'opt' 'llama') -STRATEGIES=('ddp' 'colossalai_gemini' 'colossalai_zero2') - - -export OMP_NUM_THREADS=8 - -# install requirements -pip install -r $EXAMPLES_DIR/requirements.txt - -python $EXAMPLES_DIR/download_model.py --model-dir $MODELS_DIR --config-only - -get_pretrain() { - local model=$1 - if [[ $model == "gpt2" ]]; then - echo "gpt2" - elif [[ $model == "bloom" ]]; then - echo "bigscience/bloom-560m" - elif [[ $model == "opt" ]]; then - echo "facebook/opt-350m" - else - echo "Unknown model $model" - exit 1 - fi -} - -random_choice() { - local arr=("$@") - local len=${#arr[@]} - local idx=$((RANDOM % len)) - echo ${arr[$idx]} -} - -echo "[Test]: testing sft ..." - -# FIXME: This is a hack to skip tests that are not working -# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation -# - llama-*: These tests can be passed locally, skipped for long execution time -# - *-gemini: Gemini plugin does not support `from_pretrained` yet -SKIPPED_TESTS=( - "gpt2-ddp" - "llama-ddp" - "llama-colossalai_gemini" - "llama-colossalai_zero2" -) - -GRAD_CKPTS=('' '--grad_checkpoint') -for lora_rank in '0'; do - for model in ${MODELS[@]}; do - strategies=($(shuf -e "${STRATEGIES[@]}")) - for strategy in ${strategies[@]}; do - if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy-$lora_rank " ]]; then - echo "[Test]: Skipped $model-$strategy-$lora_rank" - continue - elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy " ]]; then - echo "[Test]: Skipped $model-$strategy" - continue - fi - pretrain=$(get_pretrain $model) - pretrain_model="" - if [[ $lora_rank -gt 0 ]]; then - pretrain_model="--pretrain $pretrain" - fi - grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}") - for i in $(seq $NUM_RETRY); do - echo "[Test]: $model-$strategy-$lora_rank, attempt $i" - torchrun --standalone --nproc_per_node=4 $EXAMPLES_DIR/train_sft.py \ - $pretrain_model --tokenizer $MODELS_DIR/$model \ - --model $model --strategy $strategy --lora_rank $lora_rank $grad_ckpt \ - --dataset $SFT_DATASET --max_datasets_size 8 \ - --max_epochs 1 --batch_size 1 --accumulation_steps 1 --lr 1e-8 \ - --save_path $EXAMPLES_DIR/rlhf_models/sft_ckpt_${model}_${lora_rank} - passed=$? - if [ $passed -eq 0 ]; then - break - fi - done - if [ $passed -ne 0 ]; then - echo "[Test]: Failed $model-$strategy-$lora_rank" - exit 1 - fi - done - done -done - -echo "[Test]: testing reward model ..." - -# FIXME: This is a hack to skip tests that are not working -# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation -# - llama-*: These tests can be passed locally, skipped for long execution time -# - *-gemini: Gemini plugin does not support `from_pretrained` yet -SKIPPED_TESTS=( - "gpt2-ddp" - "llama-ddp" - "llama-colossalai_gemini" - "llama-colossalai_zero2" -) - -LOSS_FNS=('log_sig' 'log_exp') -DATASETS=('Anthropic/hh-rlhf' 'Dahoas/rm-static') -for lora_rank in '0'; do - for model in ${MODELS[@]}; do - strategies=($(shuf -e "${STRATEGIES[@]}")) - for strategy in ${strategies[@]}; do - if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy-$lora_rank " ]]; then - echo "[Test]: Skipped $model-$strategy-$lora_rank" - continue - elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy " ]]; then - echo "[Test]: Skipped $model-$strategy" - continue - fi - pretrain=$(get_pretrain $model) - pretrain_model="" - if [[ $lora_rank -gt 0 ]]; then - pretrain_model="--pretrain $pretrain" - fi - loss_fn=$(random_choice "${LOSS_FNS[@]}") - dataset=$(random_choice "${DATASETS[@]}") - subset=$(if [[ $dataset == "Dahoas/rm-static" ]]; then echo "None"; else echo "harmless-base"; fi) - for i in $(seq $NUM_RETRY); do - echo "[Test]: $model-$strategy-$lora_rank, attempt $i" - torchrun --standalone --nproc_per_node=4 $EXAMPLES_DIR/train_reward_model.py \ - $pretrain_model --tokenizer $MODELS_DIR/$model \ - --dataset $dataset --subset $subset --max_datasets_size 8 \ - --model $model --strategy $strategy --lora_rank $lora_rank \ - --loss_fn $loss_fn --batch_size 1 --lr 1e-8 \ - --save_path $EXAMPLES_DIR/rlhf_models/rm_ckpt_${model}_${lora_rank}.pt - passed=$? - if [ $passed -eq 0 ]; then - break - fi - done - if [ $passed -ne 0 ]; then - echo "[Test]: Failed to train reward model $model-$strategy-$lora_rank" - exit 1 - fi - done - done -done - -echo "[Test]: testing RLHF ..." - -# FIXME: This is a hack to skip tests that are not working -# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation -# - llama-*: These tests can be passed locally, skipped for long execution time -# - *-gemini: Gemini plugin does not support `from_pretrained` yet -SKIPPED_TESTS=( - "gpt2-ddp" - "llama-ddp" - "llama-colossalai_gemini" - "llama-colossalai_zero2" -) - -for model in ${MODELS[@]}; do - for lora_rank in '0'; do - strategies=($(shuf -e "${STRATEGIES[@]}")) - for strategy in ${strategies[@]}; do - if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy-$lora_rank " ]]; then - echo "[Test]: Skipped $model-$strategy-$lora_rank" - continue - elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy " ]]; then - echo "[Test]: Skipped $model-$strategy" - continue - fi - rm_pretrain=$(get_pretrain $model) - rm_pretrain_model="" - if [[ $lora_rank -gt 0 ]]; then - rm_pretrain_model="--rm_pretrain $rm_pretrain" - fi - for i in $(seq $NUM_RETRY); do - echo "[Test]: $model-$strategy-$lora_rank, attempt $i" - torchrun --standalone --nproc_per_node=4 $EXAMPLES_DIR/train_prompts.py \ - --prompt_dataset $PROMPT_DATASET --pretrain_dataset $PRETRAIN_DATASET --max_datasets_size 32 \ - --strategy $strategy --model $model --tokenizer $MODELS_DIR/$model \ - --num_episodes 1 --num_collect_steps 1 --num_update_steps 1 --lr 1e-8 \ - --experience_batch_size 2 --train_batch_size 1 --lora_rank $lora_rank \ - --pretrain $EXAMPLES_DIR/rlhf_models/sft_ckpt_${model}_${lora_rank} \ - $rm_pretrain_model --rm_path $EXAMPLES_DIR/rlhf_models/rm_ckpt_${model}_${lora_rank}.pt \ - --save_path $EXAMPLES_DIR/rlhf_models/actor_checkpoint_prompts - passed=$? - if [ $passed -eq 0 ]; then - break - fi - done - if [ $passed -ne 0 ]; then - echo "[Test]: Failed to train RLHF $model-$strategy-$lora_rank" - exit 1 - fi - done - rm -rf $EXAMPLES_DIR/rlhf_models/sft_ckpt_${model}_${lora_rank} - rm $EXAMPLES_DIR/rlhf_models/rm_ckpt_${model}_${lora_rank}.pt - done -done -rm -rf $EXAMPLES_DIR/rlhf_models/actor_checkpoint_prompts diff --git a/applications/Chat/.gitignore b/applications/ColossalChat/.gitignore old mode 100644 new mode 100755 similarity index 87% rename from applications/Chat/.gitignore rename to applications/ColossalChat/.gitignore index 5fa068105..33950adc0 --- a/applications/Chat/.gitignore +++ b/applications/ColossalChat/.gitignore @@ -143,6 +143,17 @@ docs/.build *.pt # wandb log -example/wandb/ +examples/wandb/ +examples/logs/ +examples/output/ examples/awesome-chatgpt-prompts/ +temp/ + +# ColossalChat +applications/ColossalChat/logs +applications/ColossalChat/models +applications/ColossalChat/sft_data +applications/ColossalChat/prompt_data +applications/ColossalChat/preference_data +applications/ColossalChat/temp diff --git a/applications/Chat/LICENSE b/applications/ColossalChat/LICENSE old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/LICENSE rename to applications/ColossalChat/LICENSE diff --git a/applications/Chat/README.md b/applications/ColossalChat/README.md old mode 100644 new mode 100755 similarity index 59% rename from applications/Chat/README.md rename to applications/ColossalChat/README.md index 349c26aad..769f0b3d0 --- a/applications/Chat/README.md +++ b/applications/ColossalChat/README.md @@ -13,10 +13,10 @@ - [Install the environment](#install-the-environment) - [Install the Transformers](#install-the-transformers) - [How to use?](#how-to-use) - - [Supervised datasets collection](#supervised-datasets-collection) - - [RLHF Training Stage1 - Supervised instructs tuning](#RLHF-training-stage1---supervised-instructs-tuning) - - [RLHF Training Stage2 - Training reward model](#RLHF-training-stage2---training-reward-model) - - [RLHF Training Stage3 - Training model with reinforcement learning by human feedback](#RLHF-training-stage3---training-model-with-reinforcement-learning-by-human-feedback) + - [Supervised datasets collection](#step-1-data-collection) + - [RLHF Training Stage1 - Supervised instructs tuning](#rlhf-training-stage1---supervised-instructs-tuning) + - [RLHF Training Stage2 - Training reward model](#rlhf-training-stage2---training-reward-model) + - [RLHF Training Stage3 - Training model with reinforcement learning by human feedback](#rlhf-training-stage3---proximal-policy-optimization) - [Inference Quantization and Serving - After Training](#inference-quantization-and-serving---after-training) - [Coati7B examples](#coati7b-examples) - [Generation](#generation) @@ -36,7 +36,7 @@ --- -## What is ColossalChat and Coati ? +## What Is ColossalChat And Coati ? [ColossalChat](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat) is the project to implement LLM with RLHF, powered by the [Colossal-AI](https://github.com/hpcaitech/ColossalAI) project. @@ -91,107 +91,191 @@ More details can be found in the latest news. ## Install -### Install the environment +### Install the Environment ```bash -conda create -n coati -conda activate coati +# Create new environment +conda create -n colossal-chat python=3.10.9 (>=3.8.7) +conda activate colossal-chat + +# Install flash-attention +git clone -b v2.0.5 https://github.com/Dao-AILab/flash-attention.git +cd $FLASH_ATTENTION_ROOT/ +pip install . +cd $FLASH_ATTENTION_ROOT/csrc/xentropy +pip install . +cd $FLASH_ATTENTION_ROOT/csrc/layer_norm +pip install . +cd $FLASH_ATTENTION_ROOT/csrc/rotary +pip install . + +# Clone Colossalai git clone https://github.com/hpcaitech/ColossalAI.git -cd ColossalAI/applications/Chat + +# Install ColossalAI +cd $COLOSSAL_AI_ROOT +BUILD_EXT=1 pip install . + +# Install ColossalChat +cd $COLOSSAL_AI_ROOT/applications/Chat pip install . ``` -### Install the Transformers +## How To Use? -```bash -pip install transformers==4.30.2 -``` +### RLHF Training Stage1 - Supervised Instructs Tuning -## How to use? +Stage1 is supervised instructs fine-tuning (SFT). This step is a crucial part of the RLHF training process, as it involves training a machine learning model using human-provided instructions to learn the initial behavior for the task at hand. Here's a detailed guide on how to SFT your LLM with ColossalChat. More details can be found in [example guideline](./examples/README.md). -### Supervised datasets collection - -We collected 104K bilingual datasets of Chinese and English, and you can find the datasets in this repo -[InstructionWild](https://github.com/XueFuzhao/InstructionWild) and in this [file](https://github.com/XueFuzhao/InstructionWild/blob/main/data/README.md). - -Here is how we collected the data - -

- -

- -### RLHF Training Stage1 - Supervised instructs tuning - -Stage1 is supervised instructs fine-tuning, which uses the datasets mentioned earlier to fine-tune the model. - -You can run the `examples/train_sft.sh` to start a supervised instructs fine-tuning. -[[Stage1 tutorial video]](https://www.youtube.com/watch?v=-qFBZFmOJfg) - -**Note**: the supervised dataset follows the following format, +#### Step 1: Data Collection +The first step in Stage 1 is to collect a dataset of human demonstrations of the following format. ```json [ - { - "instruction": "Provide a list of the top 10 most popular mobile games in Asia", - "input": "", - "output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved", - "id": 0 + {"messages": + [ + { + "from": "human", + "content": "what are some pranks with a pen i can do?" + }, + { + "from": "assistant", + "content": "Are you looking for practical joke ideas?" + }, + ... + ] }, ... ] ``` -### RLHF Training Stage2 - Training reward model +#### Step 2: Preprocessing +Once you have collected your SFT dataset, you will need to preprocess it. This involves four steps: data cleaning, data deduplication, formatting and tokenization. In this section, we will focus on formatting and tokenization. -Stage2 trains a reward model, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model +In this code, we provide a flexible way for users to set the conversation template for formatting chat data using Huggingface's newest feature--- chat template. Please follow the [example guideline](./examples/README.md) on how to format and tokenize data. -You can run the `examples/train_rm.sh` to start a reward model training. -[[Stage2 tutorial video]](https://www.youtube.com/watch?v=gMx2CApKhuo) +#### Step 3: Training +Choose a suitable model architecture for your task. Note that your model should be compatible with the tokenizer that you used to tokenize the SFT dataset. You can run [train_sft.sh](./examples/training_scripts/train_sft.sh) to start a supervised instructs fine-tuning. More details can be found in [example guideline](./examples/README.md). -### RLHF Training Stage3 - Training model with reinforcement learning by human feedback +### RLHF Training Stage2 - Training Reward Model -Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process: +Stage2 trains a reward model, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model. + +#### Step 1: Data Collection +Below shows the preference dataset format used in training the reward model. + +```json +[ + {"context": [ + { + "from": "human", + "content": "Introduce butterflies species in Oregon." + } + ] + "chosen": [ + { + "from": "assistant", + "content": "About 150 species of butterflies live in Oregon, with about 100 species are moths..." + }, + ... + ], + "rejected": [ + { + "from": "assistant", + "content": "Are you interested in just the common butterflies? There are a few common ones which will be easy to find..." + }, + ... + ] + }, + ... +] +``` + +#### Step 2: Preprocessing +Similar to the second step in the previous stage, we format the reward data into the same structured format as used in step 2 of the SFT stage. You can run [prepare_preference_dataset.sh](./examples/data_preparation_scripts/prepare_preference_dataset.sh) to prepare the preference data for reward model training. + +#### Step 3: Training +You can run [train_rm.sh](./examples/training_scripts/train_rm.sh) to start the reward model training. More details can be found in [example guideline](./examples/README.md). + +### RLHF Training Stage3 - Proximal Policy Optimization + +In stage3 we will use reinforcement learning algorithm--- Proximal Policy Optimization (PPO), which is the most complex part of the training process:

-You can run the `examples/train_prompts.sh` to start training PPO with human feedback. -[[Stage3 tutorial video]](https://www.youtube.com/watch?v=Z8wwSHxPL9g) +#### Step 1: Data Collection +PPO uses two kind of training data--- the prompt data and the sft data (optional). The first dataset is mandatory, data samples within the prompt dataset ends with a line from "human" and thus the "assistant" needs to generate a response to answer to the "human". Note that you can still use conversation that ends with a line from the "assistant", in that case, the last line will be dropped. Here is an example of the prompt dataset format. -**Note**: the required datasets follow the following format, +```json +[ + {"messages": + [ + { + "from": "human", + "content": "what are some pranks with a pen i can do?" + } + ... + ] + }, +] +``` -- `pretrain dataset` +#### Step 2: Data Preprocessing +To prepare the prompt dataset for PPO training, simply run [prepare_prompt_dataset.sh](./examples/data_preparation_scripts/prepare_prompt_dataset.sh) - ```json - [ - { - "instruction": "Provide a list of the top 10 most popular mobile games in Asia", - "input": "", - "output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved", - "id": 0 - }, - ... - ] - ``` +#### Step 3: Training +You can run the [train_ppo.sh](./examples/training_scripts/train_ppo.sh) to start PPO training. Here are some unique arguments for PPO, please refer to the training configuration section for other training configuration. More detais can be found in [example guideline](./examples/README.md). -- `prompt dataset` +```bash +--pretrain $PRETRAINED_MODEL_PATH \ +--rm_pretrain $PRETRAINED_MODEL_PATH \ # reward model architectual +--tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ +--rm_checkpoint_path $REWARD_MODEL_PATH \ # reward model checkpoint path +--prompt_dataset ${prompt_dataset[@]} \ # List of string, the prompt dataset +--ptx_dataset ${ptx_dataset[@]} \ # List of string, the SFT data used in the SFT stage +--ptx_batch_size 1 \ # batch size for calculate ptx loss +--ptx_coef 0.0 \ # none-zero if ptx loss is enable +--num_episodes 2000 \ # number of episodes to train +--num_collect_steps 1 \ +--num_update_steps 1 \ +--experience_batch_size 8 \ +--train_batch_size 4 \ +--accumulation_steps 2 +``` - ```json - [ - { - "instruction": "Edit this paragraph to make it more concise: \"Yesterday, I went to the store and bought some things. Then, I came home and put them away. After that, I went for a walk and met some friends.\"", - "id": 0 - }, - { - "instruction": "Write a descriptive paragraph about a memorable vacation you went on", - "id": 1 - }, - ... - ] - ``` +Each episode has two phases, the collect phase and the update phase. During the collect phase, we will collect experiences (answers generated by actor), store those in ExperienceBuffer. Then data in ExperienceBuffer is used during the update phase to update parameter of actor and critic. -For more details, see [`examples/`](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/examples). +- Without tensor parallelism, +``` +experience buffer size += num_process * num_collect_steps * experience_batch_size += train_batch_size * accumulation_steps * num_process +``` + +- With tensor parallelism, +``` +num_tp_group = num_process / tp +experience buffer size += num_tp_group * num_collect_steps * experience_batch_size += train_batch_size * accumulation_steps * num_tp_group +``` + +## Alternative Option For RLHF: Direct Preference Optimization + +For those seeking an alternative to Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO) presents a compelling option. DPO, as detailed in the paper (available at [https://arxiv.org/abs/2305.18290](https://arxiv.org/abs/2305.18290)), DPO offers an low-cost way to perform RLHF and usually request less computation resources compares to PPO. + +### DPO Training Stage1 - Supervised Instructs Tuning + +Please refer the [sft section](#dpo-training-stage1---supervised-instructs-tuning) in the PPO part. + +### DPO Training Stage2 - DPO Training +#### Step 1: Data Collection & Preparation +For DPO training, you only need the preference dataset. Please follow the instruction in the [preference dataset preparation section](#rlhf-training-stage2---training-reward-model) to prepare the preference data for DPO training. + +#### Step 2: Training +You can run the [train_dpo.sh](./examples/training_scripts/train_dpo.sh) to start DPO training. More detais can be found in [example guideline](./examples/README.md). ### Inference Quantization and Serving - After Training @@ -301,91 +385,60 @@ You can find more examples in this [repo](https://github.com/XueFuzhao/Instructi We have integrated the Transformers save and load pipeline, allowing users to freely call Hugging Face's language models and save them in the HF format. +- Option 1: Save the model weights, model config and generation config (Note: tokenizer will not be saved) which can be loaded using HF's from_pretrained method. ```python -from coati.models.llama import LlamaLM -from coati.trainer import SFTTrainer +# if use lora, you can choose to merge lora weights before saving +if args.lora_rank > 0 and args.merge_lora_weights: + from coati.models.lora import LORA_MANAGER -model = LlamaLM(pretrained=args.pretrain) -tokenizer = AutoTokenizer.from_pretrained(args.pretrain) + # NOTE: set model to eval to merge LoRA weights + LORA_MANAGER.merge_weights = True + model.eval() +# save model checkpoint after fitting on only rank0 +booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True) -(model, optim) = strategy.prepare((model, optim)) -trainer = SFTTrainer(model=model, - strategy=strategy, - optim=optim, - train_dataloader=train_dataloader, - eval_dataloader=eval_dataloader, - batch_size=args.batch_size, - max_epochs=args.max_epochs, - accumulation_steps=args.accumulation_steps - ) - -trainer.fit() -# this saves in pytorch format -strategy.save_model(model, args.save_path, only_rank0=True) - -# this saves in HF format -strategy.save_pretrained(model, args.save_path, only_rank0=True, tokenizer=tokenizer) ``` +- Option 2: Save the model weights, model config, generation config, as well as the optimizer, learning rate scheduler, running states (Note: tokenizer will not be saved) which are needed for resuming training. +```python +from coati.utils import save_checkpoint +# save model checkpoint after fitting on only rank0 +save_checkpoint( + save_dir=actor_save_dir, + booster=actor_booster, + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + epoch=0, + step=step, + batch_size=train_batch_size, + coordinator=coordinator, + ) +``` +To load the saved checkpoint +```python +from coati.utils import load_checkpoint +start_epoch, start_step, sampler_start_idx = load_checkpoint( + load_dir=checkpoint_path, + booster=booster, + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + ) +```
How to train with limited resources -Here are some examples that can allow you to train a 7B model on a single or multiple consumer-grade GPUs. +Here are some suggestions that can allow you to train a 7B model on a single or multiple consumer-grade GPUs. -If you only have a single 24G GPU, you can use the following script. `batch_size`, `lora_rank` and `grad_checkpoint` are the most important parameters to successfully train the model. +`batch_size`, `lora_rank` and `grad_checkpoint` are the most important parameters to successfully train the model. To maintain a descent batch size for gradient calculation, consider increase the accumulation_step and reduce the batch_size on each rank. -```bash -// [INFO]: MAX GPU MEMORY ALLOCATED: 19148.9345703125 MB -torchrun --standalone --nproc_per_node=1 train_sft.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy ddp \ - --save_path /path/to/Coati-7B \ - --dataset /path/to/data.json \ - --batch_size 1 \ - --accumulation_steps 8 \ - --lr 2e-5 \ - --max_datasets_size 512 \ - --max_epochs 1 \ - --lora_rank 16 \ - --grad_checkpoint -``` +If you only have a single 24G GPU. Generally, using lora and "zero2-cpu" will be sufficient. -`colossalai_gemini` strategy can enable a single 24G GPU to train the whole model without using LoRA if you have sufficient CPU memory. You can use the following script. - -```bash -torchrun --standalone --nproc_per_node=1 train_sft.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy colossalai_gemini \ - --save_path /path/to/Coati-7B \ - --dataset /path/to/data.json \ - --batch_size 1 \ - --accumulation_steps 8 \ - --lr 2e-5 \ - --max_datasets_size 512 \ - --max_epochs 1 \ - --grad_checkpoint -``` - -If you have 4x32 GB GPUs, you can even train the whole 7B model using our `colossalai_zero2_cpu` strategy! The script is given as follows. - -```bash -torchrun --standalone --nproc_per_node=4 train_sft.py \ - --pretrain "/path/to/LLaMa-7B/" \ - --model 'llama' \ - --strategy colossalai_zero2_cpu \ - --save_path /path/to/Coati-7B \ - --dataset /path/to/data.json \ - --batch_size 1 \ - --accumulation_steps 8 \ - --lr 2e-5 \ - --max_datasets_size 512 \ - --max_epochs 1 \ - --grad_checkpoint -``` +`gemini` and `gemini-auto` can enable a single 24G GPU to train the whole model without using LoRA if you have sufficient CPU memory. But that strategy doesn't support gradient accumulation. +If you have multiple GPUs each has very limited VRAM, say 8GB. You can try the `3d` for the plugin option, which supports tensor parellelism, set `--tp` to the number of GPUs that you have.
## The Plan @@ -396,6 +449,8 @@ torchrun --standalone --nproc_per_node=4 train_sft.py \ - [x] support inference - [x] support llama from [facebook](https://github.com/facebookresearch/llama) - [x] implement PPO-ptx fine-tuning +- [x] support flash-attention +- [x] implement DPO fine-tuning - [ ] integrate with Ray - [ ] support more RL paradigms, like Implicit Language Q-Learning (ILQL), - [ ] support chain-of-thought by [langchain](https://github.com/hwchase17/langchain) @@ -467,6 +522,7 @@ Coati is developed by ColossalAI Team: - [Fazzie](https://fazzie-key.cool/about/index.html) Contributing to the algorithm and development for SFT. - [ofey404](https://github.com/ofey404) Contributing to both front-end and back-end development. - [Wenhao Chen](https://github.com/CWHer) Contributing to subsequent code enhancements and performance improvements. +- [Anbang Ye](https://github.com/YeAnbang) Contributing to the refactored version with updated acceleration framework, LoRA, DPO and PPO. The PhD student from [(HPC-AI) Lab](https://ai.comp.nus.edu.sg/) also contributed a lot to this project. - [Zangwei Zheng](https://github.com/zhengzangw) diff --git a/applications/ColossalChat/benchmarks/Opt.json b/applications/ColossalChat/benchmarks/Opt.json new file mode 100644 index 000000000..6d47666bb --- /dev/null +++ b/applications/ColossalChat/benchmarks/Opt.json @@ -0,0 +1,17 @@ +{ + "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'Human: ' + bos_token + message['content'].strip() + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'].strip() + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + bos_token + message['content'].strip() + eos_token }}{% endif %}{% endfor %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "human_line_start": [ + 2 + ], + "human_line_end": [ + 2 + ], + "assistant_line_start": [ + 2 + ], + "assistant_line_end": [ + 2 + ], + "end_of_system_line_position": 0 +} diff --git a/applications/ColossalChat/benchmarks/README.md b/applications/ColossalChat/benchmarks/README.md new file mode 100755 index 000000000..08c5e0e6c --- /dev/null +++ b/applications/ColossalChat/benchmarks/README.md @@ -0,0 +1,37 @@ +# Benchmarks + +## Benchmark OPT with LoRA on dummy prompt data + +We provide various OPT models (string in parentheses is the corresponding model name used in this script): + +- OPT-125M (125m) +- OPT-350M (350m) +- OPT-700M (700m) +- OPT-1.3B (1.3b) +- OPT-2.7B (2.7b) +- OPT-3.5B (3.5b) +- OPT-5.5B (5.5b) +- OPT-6.7B (6.7b) +- OPT-10B (10b) +- OPT-13B (13b) + +We also provide various training strategies: + +- gemini: ColossalAI GeminiPlugin with `placement_policy="cuda"`, like zero3 +- gemini_auto: ColossalAI GeminiPlugin with `placement_policy="cpu"`, like zero3-offload +- zero2: ColossalAI zero2 +- zero2_cpu: ColossalAI zero2-offload +- 3d: ColossalAI HybridParallelPlugin with TP, DP support + +## How to Run +```bash +cd ../tests +# Prepare data for benchmark +SFT_DATASET=/path/to/sft/data/ \ +PROMPT_DATASET=/path/to/prompt/data/ \ +PRETRAIN_DATASET=/path/to/ptx/data/ \ +PREFERENCE_DATASET=/path/to/preference/data \ +./test_data_preparation.sh +# Start benchmark +./benchmark_ppo.sh +``` diff --git a/applications/ColossalChat/benchmarks/benchmark_memory_consumption.txt b/applications/ColossalChat/benchmarks/benchmark_memory_consumption.txt new file mode 100644 index 000000000..049285552 --- /dev/null +++ b/applications/ColossalChat/benchmarks/benchmark_memory_consumption.txt @@ -0,0 +1,4 @@ +Model=Opt-125m; lora_rank=0; plugin=zero2 +Max CUDA memory usage: 26123.16 MB +Model=Opt-125m; lora_rank=0; plugin=zero2 +Max CUDA memory usage: 26123.91 MB diff --git a/applications/ColossalChat/benchmarks/benchmark_performance_summarization.txt b/applications/ColossalChat/benchmarks/benchmark_performance_summarization.txt new file mode 100644 index 000000000..b2a1ff1d7 --- /dev/null +++ b/applications/ColossalChat/benchmarks/benchmark_performance_summarization.txt @@ -0,0 +1,16 @@ +facebook/opt-125m; 0; zero2 +Performance summary: +Generate 768 samples, throughput: 188.48 samples/s, TFLOPS per GPU: 361.23 +Train 768 samples, throughput: 448.38 samples/s, TFLOPS per GPU: 82.84 +Overall throughput: 118.42 samples/s +Overall time per sample: 0.01 s +Make experience time per sample: 0.01 s, 62.83% +Learn time per sample: 0.00 s, 26.41% +facebook/opt-125m; 0; zero2 +Performance summary: +Generate 768 samples, throughput: 26.32 samples/s, TFLOPS per GPU: 50.45 +Train 768 samples, throughput: 71.15 samples/s, TFLOPS per GPU: 13.14 +Overall throughput: 18.86 samples/s +Overall time per sample: 0.05 s +Make experience time per sample: 0.04 s, 71.66% +Learn time per sample: 0.01 s, 26.51% diff --git a/applications/ColossalChat/benchmarks/benchmark_ppo.py b/applications/ColossalChat/benchmarks/benchmark_ppo.py new file mode 100644 index 000000000..e1b7a313f --- /dev/null +++ b/applications/ColossalChat/benchmarks/benchmark_ppo.py @@ -0,0 +1,523 @@ +""" +For becnhmarking ppo. Mudified from examples/training_scripts/train_ppo.py +""" + +import argparse +import json +import os +import resource +from contextlib import nullcontext + +import torch +import torch.distributed as dist +from coati.dataset import ( + DataCollatorForPromptDataset, + DataCollatorForSupervisedDataset, + StatefulDistributedSampler, + load_tokenized_dataset, + setup_conversation_template, + setup_distributed_dataloader, +) +from coati.models import Critic, RewardModel, convert_to_lora_module, disable_dropout +from coati.trainer import PPOTrainer +from coati.trainer.callbacks import PerformanceEvaluator +from coati.trainer.utils import is_rank_0 +from coati.utils import load_checkpoint, replace_with_flash_attention +from transformers import AutoTokenizer, OPTForCausalLM +from transformers.models.opt.configuration_opt import OPTConfig + +import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin +from colossalai.cluster import DistCoordinator +from colossalai.lazy import LazyInitContext +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam +from colossalai.utils import get_current_device + + +def get_model_numel(model: torch.nn.Module, plugin: str, tp: int) -> int: + numel = sum(p.numel() for p in model.parameters()) + if plugin == "3d" and tp > 1: + numel *= dist.get_world_size() + return numel + + +def get_gpt_config(model_name: str) -> OPTConfig: + model_map = { + "125m": OPTConfig.from_pretrained("facebook/opt-125m"), + "350m": OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16), + "700m": OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20), + "1.3b": OPTConfig.from_pretrained("facebook/opt-1.3b"), + "2.7b": OPTConfig.from_pretrained("facebook/opt-2.7b"), + "3.5b": OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32), + "5.5b": OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32), + "6.7b": OPTConfig.from_pretrained("facebook/opt-6.7b"), + "10b": OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32), + "13b": OPTConfig.from_pretrained("facebook/opt-13b"), + } + try: + return model_map[model_name] + except KeyError: + raise ValueError(f'Unknown model "{model_name}"') + + +def benchmark_train(args): + # ============================== + # Initialize Distributed Training + # ============================== + colossalai.launch_from_torch({}) + coordinator = DistCoordinator() + + # ====================================================== + # Initialize Model, Objective, Optimizer and LR Scheduler + # ====================================================== + init_ctx = LazyInitContext(default_device=get_current_device()) if "gemini" in args.plugin else nullcontext() + + booster_policy = None + with init_ctx: + actor = OPTForCausalLM(config=get_gpt_config(args.pretrain)) + # Disable dropout + disable_dropout(actor) + ref_model = OPTForCausalLM(config=get_gpt_config(args.pretrain)) + reward_model = RewardModel(config=get_gpt_config("350m")) + critic = Critic(config=get_gpt_config("350m")) + disable_dropout(critic) + + actor_numel = get_model_numel(actor, args.plugin, args.tp) + critic_numel = get_model_numel(critic, args.plugin, args.tp) + initial_model_numel = get_model_numel(ref_model, args.plugin, args.tp) + reward_model_numel = get_model_numel(reward_model, args.plugin, args.tp) + + performance_evaluator = PerformanceEvaluator( + actor_numel, + critic_numel, + initial_model_numel, + reward_model_numel, + enable_grad_checkpoint=False, + ignore_episodes=2, + train_config={"model": "facebook/opt-" + args.pretrain, "lora_rank": args.lora_rank, "plugin": args.plugin}, + save_path="./benchmark_performance_summarization.txt", + ) + + if args.tp > 1: + if reward_model.model.config.architectures[0] != critic.model.config.architectures[0]: + raise ValueError("Reward model and critic model must have the same architecture") + if reward_model.model.config.architectures[0] == "BloomForCausalLM": + from colossalai.shardformer.policies.bloom import BloomPolicy + + booster_policy = BloomPolicy() + elif reward_model.model.config.architectures[0] == "LlamaForCausalLM": + from colossalai.shardformer.policies.llama import LlamaPolicy + + booster_policy = LlamaPolicy() + elif reward_model.model.config.architectures[0] == "GPT2LMHeadModel": + from colossalai.shardformer.policies.gpt2 import GPT2Policy + + booster_policy = GPT2Policy() + elif reward_model.model.config.architectures[0] == "ChatGLMModel": + from colossalai.shardformer.policies.chatglm2 import ChatGLMPolicy + + booster_policy = ChatGLMPolicy() + elif reward_model.model.config.architectures[0] == "OPTForCausalLM": + from colossalai.shardformer.policies.opt import OPTPolicy + + booster_policy = OPTPolicy() + else: + raise ValueError("Unknown model architecture for policy") + + if args.lora_rank > 0: + actor = convert_to_lora_module(actor, args.lora_rank, lora_train_bias=args.lora_train_bias) + critic = convert_to_lora_module(critic, args.lora_rank, lora_train_bias=args.lora_train_bias) + + if args.grad_checkpoint and args.lora_rank == 0: + actor.gradient_checkpointing_enable() + critic.model.gradient_checkpointing_enable() + coordinator.print_on_master(msg="Gradient checkpointing enabled successfully") + elif args.lora_rank > 0: + coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled") + + if args.use_flash_attn: + replace_with_flash_attention(model=actor) + replace_with_flash_attention(model=critic) + coordinator.print_on_master(msg="Flash-attention enabled successfully") + + # configure tokenizer + tokenizer_dir = args.tokenizer_dir if args.tokenizer_dir is not None else args.pretrain + tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir) + if os.path.exists(args.conversation_template_config): + conversation_template_config = json.load(open(args.conversation_template_config, "r", encoding="utf8")) + conversation_template = setup_conversation_template( + tokenizer, chat_template_config=conversation_template_config, save_path=args.conversation_template_config + ) + stop_token_ids = ( + conversation_template.assistant_line_end if len(conversation_template.assistant_line_end) > 0 else None + ) + else: + raise ValueError("Conversation template config is not provided or incorrect") + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None: + logger.warning( + "The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them." + ) + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + tokenizer.padding_side = "left" # left padding for generation (online learning) + + # configure generation config + actor.generation_config.update( + pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id + ) + + # configure optimizer + coordinator.print_on_master(f"setting up optimizer for actor: lr={args.lr}, weight_decay={args.weight_decay}") + actor_optim = HybridAdam( + model_params=actor.parameters(), + lr=args.lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + coordinator.print_on_master(f"setting up optimizer for critic: lr={args.lr}, weight_decay={args.weight_decay}") + critic_optim = HybridAdam( + model_params=critic.parameters(), + lr=args.critic_lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + # configure dataset + coordinator.print_on_master(f"Load dataset: {args.prompt_dataset}") + mode_map = {"train": "train", "valid": "validation", "test": "test"} + train_prompt_dataset = load_tokenized_dataset(dataset_paths=args.prompt_dataset, mode="train", mode_map=mode_map) + coordinator.print_on_master(f"prompt dataset size: {len(train_prompt_dataset)}") + data_collator = DataCollatorForPromptDataset(tokenizer=tokenizer, max_length=args.max_length - args.max_seq_len) + train_prompt_dataloader = setup_distributed_dataloader( + dataset=train_prompt_dataset, + batch_size=args.experience_batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + + if len(args.pretrain_dataset) > 0: + train_pretrain_dataset = load_tokenized_dataset( + dataset_paths=args.pretrain_dataset, mode="train", mode_map=mode_map + ) + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length) + train_pretrain_dataloader = setup_distributed_dataloader( + dataset=train_pretrain_dataset, + batch_size=args.ptx_batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + else: + train_pretrain_dataloader = None + + if args.warmup_steps is None: + args.warmup_steps = int(0.025 * args.num_episodes) + coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}") + + actor_lr_scheduler = CosineAnnealingWarmupLR( + optimizer=actor_optim, + total_steps=args.num_episodes, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + critic_lr_scheduler = CosineAnnealingWarmupLR( + optimizer=critic_optim, + total_steps=args.num_episodes, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + # ============================== + # Initialize Booster + # ============================== + if args.plugin == "gemini": + plugin = GeminiPlugin( + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "gemini_auto": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="auto", + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2_cpu": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + cpu_offload=True, + max_norm=args.grad_clip, + ) + elif args.plugin == "3d": + plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + precision=args.mixed_precision, + ) + custom_plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + precision=args.mixed_precision, + custom_policy=booster_policy, + ) + else: + raise ValueError(f"Unknown plugin {args.plugin}") + + if args.plugin != "3d": + custom_plugin = plugin + + actor_booster = Booster(plugin=plugin) + ref_booster = Booster(plugin=plugin) + rm_booster = Booster(plugin=custom_plugin) + critic_booster = Booster(plugin=custom_plugin) + + default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16 + torch.set_default_dtype(default_dtype) + actor, actor_optim, _, train_prompt_dataloader, actor_lr_scheduler = actor_booster.boost( + model=actor, + optimizer=actor_optim, + lr_scheduler=actor_lr_scheduler, + dataloader=train_prompt_dataloader, + ) + + critic, critic_optim, _, _, critic_lr_scheduler = critic_booster.boost( + model=critic, + optimizer=critic_optim, + lr_scheduler=critic_lr_scheduler, + dataloader=train_prompt_dataloader, + ) + reward_model, _, _, _, _ = rm_booster.boost(model=reward_model, dataloader=train_prompt_dataloader) + ref_model, _, _, _, _ = ref_booster.boost(model=ref_model, dataloader=train_prompt_dataloader) + + torch.set_default_dtype(torch.float) + + coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB") + coordinator.print_on_master( + f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + sampler_start_idx = 0 + start_step = 0 + + if args.rm_checkpoint_path is not None: + if "modeling" in args.rm_checkpoint_path: + rm_booster.load_model(reward_model, args.rm_checkpoint_path) + else: + _, _, _ = load_checkpoint( + load_dir=args.rm_checkpoint_path, + booster=rm_booster, + model=reward_model, + optimizer=None, + lr_scheduler=None, + ) + coordinator.print_on_master(f"Loaded reward model checkpoint {args.rm_checkpoint_path}") + + if args.checkpoint_path is not None: + if "modeling" in args.checkpoint_path: + actor_booster.load_model(actor, args.checkpoint_path) + ref_booster.load_model(ref_model, args.checkpoint_path) + coordinator.print_on_master(f"Loaded actor and reference model {args.checkpoint_path}") + else: + _, start_step, sampler_start_idx = load_checkpoint( + load_dir=args.checkpoint_path, + booster=actor_booster, + model=actor, + optimizer=actor_optim, + lr_scheduler=actor_lr_scheduler, + ) + _, _, _ = load_checkpoint( + load_dir=args.checkpoint_path, + booster=ref_booster, + model=ref_model, + optimizer=critic_optim, + lr_scheduler=critic_lr_scheduler, + ) + assert isinstance(train_prompt_dataloader.sampler, StatefulDistributedSampler) + train_prompt_dataloader.sampler.set_start_index(start_index=sampler_start_idx) + + coordinator.print_on_master( + f"Loaded actor and reference model checkpoint {args.checkpoint_path} at spisode {start_step}" + ) + coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}") + + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + if args.critic_checkpoint_path is not None: + if "modeling" in args.critic_checkpoint_path: + critic_booster.load_model(critic, args.critic_checkpoint_path) + else: + _, _, _ = load_checkpoint( + load_dir=args.critic_checkpoint_path, + booster=critic_booster, + model=critic, + optimizer=critic_optim, + lr_scheduler=critic_lr_scheduler, + ) + coordinator.print_on_master(f"Loaded critic checkpoint {args.critic_checkpoint_path}") + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + # configure trainer + trainer = PPOTrainer( + actor_booster, + critic_booster, + actor, + critic, + reward_model, + ref_model, + actor_optim, + critic_optim, + actor_lr_scheduler, + critic_lr_scheduler, + tokenizer=tokenizer, + stop_token_ids=stop_token_ids, + kl_coef=args.kl_coef, + ptx_coef=args.ptx_coef, + train_batch_size=args.train_batch_size, + buffer_limit=args.num_collect_steps * args.experience_batch_size, + max_length=args.max_length, + max_new_tokens=args.max_seq_len, + use_cache=True, + do_sample=True, + temperature=0.7, + accumulation_steps=args.accumulation_steps, + save_dir=args.save_path, + save_interval=args.save_interval, + top_k=50, + use_tp=args.tp > 1, + offload_inference_models="gemini" not in args.plugin, + callbacks=[performance_evaluator], + coordinator=coordinator, + ) + + trainer.fit( + num_episodes=args.num_episodes, + num_collect_steps=args.num_collect_steps, + num_update_steps=args.num_update_steps, + prompt_dataloader=train_prompt_dataloader, + pretrain_dataloader=train_pretrain_dataloader, + log_dir=args.log_dir, + use_wandb=args.use_wandb, + ) + + if args.lora_rank > 0 and args.merge_lora_weights: + from coati.models.lora import LORA_MANAGER + + # NOTE: set model to eval to merge LoRA weights + LORA_MANAGER.merge_weights = True + actor.eval() + critic.eval() + # save model checkpoint after fitting on only rank0 + coordinator.print_on_master("Start saving final actor model checkpoint") + actor_booster.save_model(actor, os.path.join(trainer.actor_save_dir, "modeling"), shard=True) + coordinator.print_on_master( + f"Saved final actor model checkpoint at episodes {args.num_episodes} at folder {args.save_path}" + ) + coordinator.print_on_master("Start saving final critic model checkpoint") + critic_booster.save_model(critic, os.path.join(trainer.critic_save_dir, "modeling"), shard=True) + coordinator.print_on_master( + f"Saved final critic model checkpoint at episodes {args.num_episodes} at folder {args.save_path}" + ) + memory_consumption = torch.cuda.max_memory_allocated() / 1024**2 + if is_rank_0(): + with open("./benchmark_memory_consumption.txt", "a+") as f: + f.write( + f"Model=Opt-{args.pretrain}; lora_rank={args.lora_rank}; plugin={args.plugin}\nMax CUDA memory usage: {memory_consumption:.2f} MB\n" + ) + coordinator.print_on_master(f"Max CUDA memory usage: {memory_consumption:.2f} MB") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--prompt_dataset", nargs="+", default=[]) + parser.add_argument("--pretrain_dataset", nargs="+", default=[]) + parser.add_argument( + "--plugin", + type=str, + default="gemini", + choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"], + help="Choose which plugin to use", + ) + parser.add_argument( + "--conversation_template_config", + type=str, + default=None, + help="Path \ + to save conversation template config files.", + ) + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value") + parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay") + parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps") + parser.add_argument("--tokenizer_dir", type=str, default=None) + parser.add_argument("--tp", type=int, default=1) + parser.add_argument("--pretrain", type=str, default=None) + parser.add_argument("--checkpoint_path", type=str, default=None) + parser.add_argument("--critic_checkpoint_path", type=str, default=None) + parser.add_argument("--rm_checkpoint_path", type=str, help="Reward model checkpoint path") + parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts") + parser.add_argument("--num_episodes", type=int, default=1) + parser.add_argument("--num_collect_steps", type=int, default=2) + parser.add_argument("--num_update_steps", type=int, default=5) + parser.add_argument("--save_interval", type=int, default=1000) + parser.add_argument("--train_batch_size", type=int, default=16) + parser.add_argument("--experience_batch_size", type=int, default=16) + parser.add_argument("--ptx_batch_size", type=int, default=1) + parser.add_argument("--lora_train_bias", type=str, default="none") + parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision") + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") + parser.add_argument("--merge_lora_weights", type=bool, default=True) + parser.add_argument("--lr", type=float, default=9e-6) + parser.add_argument("--critic_lr", type=float, default=9e-6) + parser.add_argument("--kl_coef", type=float, default=0.1) + parser.add_argument("--ptx_coef", type=float, default=0.0) + parser.add_argument("--max_length", type=int, default=512) + parser.add_argument("--max_seq_len", type=int, default=256) + parser.add_argument("--log_dir", default="logs", type=str) + parser.add_argument("--use_wandb", default=False, action="store_true") + parser.add_argument("--grad_checkpoint", default=False, action="store_true") + parser.add_argument("--use_flash_attn", default=False, action="store_true") + args = parser.parse_args() + benchmark_train(args) diff --git a/applications/ColossalChat/benchmarks/benchmark_ppo.sh b/applications/ColossalChat/benchmarks/benchmark_ppo.sh new file mode 100755 index 000000000..e88757659 --- /dev/null +++ b/applications/ColossalChat/benchmarks/benchmark_ppo.sh @@ -0,0 +1,119 @@ +#!/usr/bin/env bash + +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} + +set_n_least_used_CUDA_VISIBLE_DEVICES 8 + +set -xu + +NUM_RETRY=3 +BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) +EXAMPLES_DIR=$BASE_DIR/examples +TEMP_DIR=$BASE_DIR/temp +MODEL_SAVE_PATH=$TEMP_DIR/rlhf_models +MODELS_DIR=$TEMP_DIR/models_config +# To benchmark different models, change the following line +# MODELS=('125m' '350m' '700m' '1.3b' '2.7b' '3.5b' '5.5b' '6.7b' '10b' '13b') +MODELS=('125m') +# To benchmark different strategies, change the following line +# PLUGINS=('zero2', 'zero2_cpu', '3d') +PLUGINS=('zero2') +LORA_RANK=('0') + +export OMP_NUM_THREADS=8 + +rm ./benchmark_memory_consumption.txt +rm ./benchmark_performance_summarization.txt + +# install requirements +pip install -r $EXAMPLES_DIR/requirements.txt + +random_choice() { + local arr=("$@") + local len=${#arr[@]} + local idx=$((RANDOM % len)) + echo ${arr[$idx]} +} + +echo "[Test]: testing ppo ..." + +SKIPPED_TESTS=( +) + +GRAD_CKPTS=('' '--grad_checkpoint') +GRAD_CKPTS=('') +for lora_rank in ${LORA_RANK[@]}; do + for model in ${MODELS[@]}; do + plugins=($(shuf -e "${PLUGINS[@]}")) + for plugin in ${plugins[@]}; do + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then + echo "[Test]: Skipped $model-$plugin-$lora_rank" + continue + elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then + echo "[Test]: Skipped $model-$plugin" + continue + fi + pretrain=$model + tokenizer_dir="facebook/opt-125m" + grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}") + tp='1' + if [[ $plugin == "3d" ]]; then + tp='4' + fi + for i in $(seq $NUM_RETRY); do + echo "[Test]: $model-$plugin-$lora_rank, attempt $i" + declare -a prompt_dataset=() + for split in $(seq -f "%05g" 0 9); do + prompt_dataset+=("$TEMP_DIR/benchmark/arrow/part-$split") + done + colossalai run --nproc_per_node 8 --master_port 28547 $BASE_DIR/benchmarks/benchmark_ppo.py \ + --pretrain $pretrain \ + --tokenizer_dir $tokenizer_dir \ + --prompt_dataset ${prompt_dataset[@]} \ + --ptx_coef 0 \ + --save_path $MODEL_SAVE_PATH \ + --conversation_template_config ./Opt.json \ + --lora_rank $lora_rank \ + --plugin $plugin \ + --num_episodes 5 \ + --num_collect_steps 1 \ + --num_update_steps 1 \ + --max_seq_len 128 \ + --max_length 512 \ + --experience_batch_size 32 \ + --train_batch_size 32 \ + --accumulation_steps 1 \ + --lr 9e-6 \ + --mixed_precision "bf16" \ + --grad_clip 1.0 \ + --use_flash_attn \ + --tp $tp \ + --lr 2e-5 \ + $grad_ckpt + passed=$? + if [ $passed -eq 0 ]; then + rm -rf $MODEL_SAVE_PATH/* + rm -rf $MODELS_DIR/* + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$plugin-$lora_rank" + exit 1 + fi + done + done +done diff --git a/applications/ColossalChat/benchmarks/data_preparation.sh b/applications/ColossalChat/benchmarks/data_preparation.sh new file mode 100755 index 000000000..ca2986be4 --- /dev/null +++ b/applications/ColossalChat/benchmarks/data_preparation.sh @@ -0,0 +1,16 @@ +SAVE_DIR="" + + +BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) +EXAMPLES_DIR=$BASE_DIR/examples +SAVE_DIR=$BASE_DIR/temp/benchmark + +rm -rf $SAVE_DIR + +python $EXAMPLES_DIR/data_preparation_scripts/prepare_prompt_dataset.py --data_input_dirs "/home/yeanbang/data/dataset/sft_data/alpaca/data_preprocessed/train" \ + --conversation_template_config ./Opt.json \ + --tokenizer_dir "facebook/opt-125m" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow \ + --num_samples_per_datafile 30 diff --git a/applications/Chat/benchmarks/ray/1mmt_dummy.py b/applications/ColossalChat/benchmarks/ray/1mmt_dummy.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/benchmarks/ray/1mmt_dummy.py rename to applications/ColossalChat/benchmarks/ray/1mmt_dummy.py diff --git a/applications/Chat/benchmarks/ray/mmmt_dummy.py b/applications/ColossalChat/benchmarks/ray/mmmt_dummy.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/benchmarks/ray/mmmt_dummy.py rename to applications/ColossalChat/benchmarks/ray/mmmt_dummy.py diff --git a/applications/Chat/coati/__init__.py b/applications/ColossalChat/coati/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/__init__.py rename to applications/ColossalChat/coati/__init__.py diff --git a/applications/ColossalChat/coati/dataset/__init__.py b/applications/ColossalChat/coati/dataset/__init__.py new file mode 100755 index 000000000..e216c37e1 --- /dev/null +++ b/applications/ColossalChat/coati/dataset/__init__.py @@ -0,0 +1,26 @@ +from .conversation import Conversation, setup_conversation_template +from .loader import ( + DataCollatorForPreferenceDataset, + DataCollatorForPromptDataset, + DataCollatorForSupervisedDataset, + StatefulDistributedSampler, + load_tokenized_dataset, + setup_distributed_dataloader, +) +from .tokenization_utils import supervised_tokenize_sft, tokenize_prompt_dataset, tokenize_rlhf + +__all__ = [ + "tokenize_prompt_dataset", + "DataCollatorForPromptDataset", + "is_rank_0", + "DataCollatorForPreferenceDataset", + "DataCollatorForSupervisedDataset", + "StatefulDistributedSampler", + "load_tokenized_dataset", + "setup_distributed_dataloader", + "supervised_tokenize_pretrain", + "supervised_tokenize_sft", + "tokenize_rlhf", + "setup_conversation_template", + "Conversation", +] diff --git a/applications/ColossalChat/coati/dataset/conversation.py b/applications/ColossalChat/coati/dataset/conversation.py new file mode 100755 index 000000000..15a33be93 --- /dev/null +++ b/applications/ColossalChat/coati/dataset/conversation.py @@ -0,0 +1,143 @@ +import dataclasses +import json +import os +from typing import Any, Dict, List + +import torch.distributed as dist +from transformers import AutoTokenizer, PreTrainedTokenizer + +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + + +@dataclasses.dataclass +class Conversation: + tokenizer: PreTrainedTokenizer + system_message: str + chat_template: str + stop_ids: List[int] + + @classmethod + def from_config(cls, tokenizer: PreTrainedTokenizer, config: Dict): + """ + Setup the conversation template from config + """ + tokenizer.chat_template = config["chat_template"] + conv = cls(tokenizer, config["system_message"], config["chat_template"], config["stop_ids"]) + conv.clear() + return conv + + def clear(self): + self.messages = [] + + @classmethod + def get_conversation_template_keys(cls): + return ["system_message", "chat_template"] + + def __str__(self): + return json.dumps( + {k: self.__dict__[k] for k in self.__dict__ if k not in ["tokenizer", "messages"]}, + ensure_ascii=False, + indent=4, + ) + + def get_prompt(self, length: int = None, add_generation_prompt=False) -> Any: + """ + Retrieves the prompt for the conversation. + + Args: + length (int, optional): The number of messages to include in the prompt. Defaults to None. + get_seps_info (bool, optional): Whether to include separator information in the output. Defaults to False. + add_generation_prompt (bool, optional): Whether to add the assistant line start token in generation (for generation only). Defaults to False. + + Returns: + str or tuple: The prompt string if get_seps_info is False, otherwise a tuple containing the prompt string and separator information. + """ + + if length is None: + length = len(self.messages) + + assert length <= len(self.messages) + if self.system_message is not None: + messages = [{"role": "system", "content": self.system_message}] + self.messages[:length] + else: + messages = self.messages[:length] + prompt = self.tokenizer.apply_chat_template( + messages, tokenize=False, add_generation_prompt=add_generation_prompt + ) + return prompt + + def save_prompt(self): + return self.get_prompt() + + def append_message(self, role: str, message: str): + """ + Append a message to the conversation. + + Args: + role (str): The role of the message sender. Must be either 'user' or 'assistant'. + message (str): The content of the message. + + Raises: + AssertionError: If the role is not 'user' or 'assistant'. + """ + assert role in ["user", "assistant"] + self.messages.append({"role": role, "content": message}) + + def copy(self): + return Conversation(tokenizer=self.tokenizer, chat_template=self.chat_template) + + +def setup_conversation_template( + tokenizer: PreTrainedTokenizer, chat_template_config: Dict = None, save_path: str = None +) -> Conversation: + """ + Setup the conversation template, if chat_template is given, will replace the default chat_template of the tokenizer + with it. Otherwise, the default chat_template will be used. If the tokenizer doesn't have a default chat_template, + raise error to remind the user to set it manually. + + Args: + tokenizer: The tokenizer to use + chat_template_config: + { + "system_message": str The system message to use + "chat_template": str The chat_template to use, if can be a chat_template, a huggingface model path or a local model. + if a huggeface model path or a local model, the chat_template will be loaded from the model's tokenizer's default chat template. + "stop_ids": List[int], the token ids used to terminate generation. You need to provide this for ppo training and generation. + } + """ + if any([s not in chat_template_config.keys() for s in Conversation.get_conversation_template_keys()]): + # Try to automatically set up conversation template, if fail, it throws an error that you need to do it manually + if "system_message" not in chat_template_config: + logger.warning("No system message is provided, will not use system message.") + if "chat_template" not in chat_template_config: + logger.warning("No chat_template is provided, will try to load it from the tokenizer.") + if tokenizer.chat_template != None: + chat_template_config["chat_template"] = tokenizer.chat_template + else: + raise ValueError( + f"Load a tokenizer from {chat_template_config['chat_template']}, which doesn't have a default chat template, please set it manually." + ) + else: + try: + tokenizer = AutoTokenizer.from_pretrained(chat_template_config["chat_template"]) + if tokenizer.chat_template != None: + chat_template_config["chat_template"] = tokenizer.chat_template + else: + raise ValueError( + f"Load a tokenizer from {chat_template_config['chat_template']}, which doesn't have a default chat template, please set it manually." + ) + logger.warning( + f"chat_template is provided as a local model path or huggingface model path, loaded chat_template from \"{chat_template_config['chat_template']}\"." + ) + except OSError: + pass + except ValueError as e: + raise ValueError(e) + if not dist.is_initialized() or dist.get_rank() == 0: + os.makedirs(os.path.dirname(save_path), exist_ok=True) + with open(save_path, "w", encoding="utf8") as f: + logger.info(f"Successfully generated a conversation tempalte config, save to {save_path}.") + json.dump(chat_template_config, f, indent=4, ensure_ascii=False) + return Conversation.from_config(tokenizer, chat_template_config) diff --git a/applications/ColossalChat/coati/dataset/loader.py b/applications/ColossalChat/coati/dataset/loader.py new file mode 100755 index 000000000..93cc1dab8 --- /dev/null +++ b/applications/ColossalChat/coati/dataset/loader.py @@ -0,0 +1,383 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Dataloader for sft, dpo, ppo +""" + +import math +import os +import random +from dataclasses import dataclass +from typing import Callable, Dict, Iterator, List, Optional, Sequence, Union + +import numpy as np +import torch +import torch.distributed as dist +import torch.nn.functional as F +from coati.dataset.utils import chuncate_sequence, pad_to_max_len +from datasets import Dataset as HFDataset +from datasets import dataset_dict, load_from_disk +from torch.distributed import ProcessGroup +from torch.distributed.distributed_c10d import _get_default_group +from torch.utils.data import ConcatDataset, DataLoader, Dataset, DistributedSampler +from transformers.tokenization_utils import PreTrainedTokenizer + +DatasetType = Union[Dataset, ConcatDataset, dataset_dict.Dataset] +PathType = Union[str, os.PathLike] + + +def load_tokenized_dataset( + dataset_paths: Union[PathType, List[PathType]], mode: str = "train", **kwargs +) -> Optional[DatasetType]: + """ + Load pre-tokenized dataset. + Each instance of dataset is a dictionary with + `{'input_ids': List[int], 'labels': List[int], sequence: str}` format. + """ + mode_map = kwargs.get("mode_map", {"train": "train", "dev": "validation", "test": "test"}) + assert mode in tuple(mode_map), f"Unsupported mode {mode}, it must be in {tuple(mode_map)}" + + if isinstance(dataset_paths, (str, os.PathLike)): + dataset_paths = [dataset_paths] + + datasets = [] # `List[datasets.dataset_dict.Dataset]` + for ds_path in dataset_paths: + ds_path = os.path.abspath(ds_path) + assert os.path.exists(ds_path), f"Not existed file path {ds_path}" + ds_dict = load_from_disk(dataset_path=ds_path, keep_in_memory=False) + if isinstance(ds_dict, HFDataset): + datasets.append(ds_dict) + else: + if mode_map[mode] in ds_dict: + datasets.append(ds_dict[mode_map[mode]]) + if len(datasets) == 0: + return None + if len(datasets) == 1: + return datasets.pop() + return ConcatDataset(datasets=datasets) + + +@dataclass +class DataCollatorForSupervisedDataset(object): + """ + Collate instances for supervised dataset. + Each instance is a tokenized dictionary with fields + `input_ids`(List[int]), `labels`(List[int]) and `sequence`(str). + """ + + tokenizer: PreTrainedTokenizer + max_length: int = 4096 + ignore_index: int = -100 + + def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]: + """ + + Args: + instances (`Sequence[Dict[str, List[int]]]`): + Mini-batch samples, each sample is stored in an individual dictionary. + + Returns: + (`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`: + `input_ids`: `torch.Tensor` of shape (bsz, max_len); + `attention_mask`: `torch.BoolTensor` of shape (bsz, max_len); + `labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`. + """ + assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, ( + f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, " + f"but now `{self.tokenizer.pad_token_id}`" + ) + + # `List[torch.Tensor]` + batch_input_ids = [ + torch.LongTensor(instance["input_ids"][: self.max_length]) + if len(instance["input_ids"]) > self.max_length + else torch.LongTensor(instance["input_ids"]) + for instance in instances + ] + batch_labels = [ + torch.LongTensor(instance["labels"][: self.max_length]) + if len(instance["labels"]) > self.max_length + else torch.LongTensor(instance["labels"]) + for instance in instances + ] + if self.tokenizer.padding_side == "right": + input_ids = torch.nn.utils.rnn.pad_sequence( + sequences=batch_input_ids, + batch_first=True, + padding_value=self.tokenizer.pad_token_id, + ) # (bsz, max_len) + labels = torch.nn.utils.rnn.pad_sequence( + sequences=batch_labels, + batch_first=True, + padding_value=self.ignore_index, + ) # (bsz, max_len) + # pad to max + to_pad = self.max_length - input_ids.size(1) + input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id) + labels = F.pad(labels, (0, to_pad), value=self.ignore_index) + elif self.tokenizer.padding_side == "left": + reversed_input_ids = [seq.flip(dims=(0,)) for seq in batch_input_ids] + reversed_input_ids = torch.nn.utils.rnn.pad_sequence( + sequences=reversed_input_ids, + batch_first=True, + padding_value=self.tokenizer.pad_token_id, + ) # (bsz, max_len) + input_ids = torch.flip(reversed_input_ids, dims=(1,)) # (bsz, max_len) + reversed_labels = [seq.flip(dims=(0,)) for seq in batch_labels] + reversed_labels = torch.nn.utils.rnn.pad_sequence( + sequences=reversed_labels, + batch_first=True, + padding_value=self.ignore_index, + ) # (bsz, max_len) + labels = torch.flip(reversed_labels, dims=(1,)) # (bsz, max_len) + else: + raise RuntimeError( + f"`{self.tokenizer.__class__.__name__}.padding_side` can only be `left` or `right`, " + f"but now `{self.tokenizer.padding_side}`" + ) + + attention_mask = input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len) + + return dict(input_ids=input_ids, attention_mask=attention_mask, labels=labels) + + +@dataclass +class DataCollatorForPromptDataset(DataCollatorForSupervisedDataset): + def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]: + """ + + Args: + instances (`Sequence[Dict[str, List[int]]]`): + Mini-batch samples, each sample is stored in an individual dictionary. + + Returns: + (`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`: + `input_ids`: `torch.Tensor` of shape (bsz, max_len); + `attention_mask`: `torch.BoolTensor` of shape (bsz, max_len); + """ + instances = [{"input_ids": ins["input_ids"], "labels": ins["input_ids"]} for ins in instances] + ret = super().__call__(instances=instances) + input_ids = F.pad( + ret["input_ids"], (self.max_length - ret["input_ids"].size(1), 0), value=self.tokenizer.pad_token_id + ) + attention_mask = F.pad(ret["attention_mask"], (self.max_length - ret["attention_mask"].size(1), 0), value=False) + return {"input_ids": input_ids, "attention_mask": attention_mask} + + +@dataclass +class DataCollatorForPreferenceDataset(object): + """ + Collate instances for supervised dataset. + Each instance is a tokenized dictionary with fields + `input_ids`(List[int]), `labels`(List[int]) and `sequence`(str). + """ + + tokenizer: PreTrainedTokenizer + max_length: int = 4096 + + def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]: + """ + + Args: + instances (`Sequence[Dict[str, List[int]]]`): + Mini-batch samples, each sample is stored in an individual dictionary. + + Returns: + (`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`: + `input_ids`: `torch.Tensor` of shape (bsz, max_len); + `attention_mask`: `torch.BoolTensor` of shape (bsz, max_len); + `labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`. + """ + assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, ( + f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, " + f"but now `{self.tokenizer.pad_token_id}`" + ) + + ( + chosen_input_ids, + chosen_loss_mask, # [batch_size * seq_len] + reject_input_ids, + reject_loss_mask, + ) = ( + chuncate_sequence([ins["chosen_input_ids"] for ins in instances], self.max_length, torch.int64), + chuncate_sequence([ins["chosen_loss_mask"] for ins in instances], self.max_length, torch.bool), + chuncate_sequence([ins["rejected_input_ids"] for ins in instances], self.max_length, torch.int64), + chuncate_sequence([ins["rejected_loss_mask"] for ins in instances], self.max_length, torch.bool), + ) + + padding_side = self.tokenizer.padding_side + chosen_attention_mask = [torch.ones_like(seq).bool() for seq in chosen_input_ids] + reject_attention_mask = [torch.ones_like(seq).bool() for seq in reject_input_ids] + + ( + chosen_input_ids, + chosen_attention_mask, + chosen_loss_mask, + reject_input_ids, + reject_attention_mask, + reject_loss_mask, + ) = ( + pad_to_max_len(chosen_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side), + pad_to_max_len(chosen_attention_mask, self.max_length, False, padding_side=padding_side), + pad_to_max_len(chosen_loss_mask, self.max_length, False, padding_side=padding_side), + pad_to_max_len(reject_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side), + pad_to_max_len(reject_attention_mask, self.max_length, False, padding_side=padding_side), + pad_to_max_len(reject_loss_mask, self.max_length, False, padding_side=padding_side), + ) + + return dict( + chosen_input_ids=chosen_input_ids, + chosen_attention_mask=chosen_attention_mask, + chosen_loss_mask=chosen_loss_mask, + reject_input_ids=reject_input_ids, + reject_attention_mask=reject_attention_mask, + reject_loss_mask=reject_loss_mask, + ) + + +class StatefulDistributedSampler(DistributedSampler): + """ + Stateful distributed sampler for multi-stage training. + """ + + def __init__( + self, + dataset: DatasetType, + num_replicas: Optional[int] = None, + rank: Optional[int] = None, + shuffle: bool = True, + seed: int = 0, + drop_last: bool = False, + use_tp: Optional[bool] = False, + ) -> None: + if not use_tp: + super().__init__( + dataset=dataset, + num_replicas=num_replicas, + rank=rank, + shuffle=shuffle, + seed=seed, + drop_last=drop_last, + ) + else: + # adapted from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L62 + # TODO: support tp_group>1. will fix it later + num_replicas = 1 + if rank is None: + rank = dist.get_rank() + if rank < 0: + raise ValueError(f"Invalid rank {rank}, rank should be in the interval [0, 0]") + self.dataset = dataset + self.num_replicas = num_replicas + self.rank = rank + self.epoch = 0 + self.drop_last = drop_last + # If the dataset length is evenly divisible by # of replicas, then there + # is no need to drop any data, since the dataset will be split equally. + if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type] + # Split to nearest available length that is evenly divisible. + # This is to ensure each rank receives the same amount of data when + # using this Sampler. + self.num_samples = math.ceil( + (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type] + ) + else: + self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type] + self.total_size = self.num_samples * self.num_replicas + self.shuffle = shuffle + self.seed = seed + self.start_index = 0 + self.use_tp = use_tp + + def __iter__(self) -> Iterator: + if self.use_tp: + # TODO Add support for tp_group not equal to 1 + pass + # adpated from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L96 + if self.shuffle: + # deterministically shuffle based on epoch and seed + g = torch.Generator() + g.manual_seed(self.seed + self.epoch) + indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] + else: + indices = list(range(len(self.dataset))) # type: ignore[arg-type] + + if not self.drop_last: + # add extra samples to make it evenly divisible + padding_size = self.total_size - len(indices) + if padding_size <= len(indices): + indices += indices[:padding_size] + else: + indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] + else: + # remove tail of data to make it evenly divisible. + indices = indices[: self.total_size] + assert len(indices) == self.total_size + + # subsample + indices = indices[ + : self.total_size : self.num_replicas + ] # num_replicas=tp_group=1, we only support tp_group==1 for now + assert len(indices) == self.num_samples + + return iter(indices) + + else: + iterator = super().__iter__() + indices = list(iterator) + indices = indices[self.start_index :] + return iter(indices) + + def __len__(self) -> int: + return self.num_samples - self.start_index + + def set_start_index(self, start_index: int) -> None: + self.start_index = start_index + + +def setup_distributed_dataloader( + dataset: DatasetType, + batch_size: int = 1, + shuffle: bool = False, + seed: int = 1024, + drop_last: bool = False, + pin_memory: bool = False, + num_workers: int = 0, + collate_fn: Callable[[Sequence[Dict[str, Union[str, List[int]]]]], Dict[str, torch.Tensor]] = None, + process_group: Optional[ProcessGroup] = None, + use_tp: Optional[bool] = False, + **kwargs, +) -> DataLoader: + """ + Setup dataloader for distributed training. + """ + _kwargs = kwargs.copy() + process_group = process_group or _get_default_group() + sampler = StatefulDistributedSampler( + dataset=dataset, + num_replicas=process_group.size() if not use_tp else 1, + rank=process_group.rank(), + shuffle=shuffle, + seed=seed, + drop_last=drop_last, + use_tp=use_tp, + ) + + # Deterministic dataloader + def seed_worker(worker_id: int) -> None: + worker_seed = seed + np.random.seed(worker_seed) + torch.manual_seed(worker_seed) + random.seed(worker_seed) + + return DataLoader( + dataset=dataset, + batch_size=batch_size, + sampler=sampler, + num_workers=num_workers, + collate_fn=collate_fn, + pin_memory=pin_memory, + drop_last=drop_last, + worker_init_fn=seed_worker, + **_kwargs, + ) diff --git a/applications/ColossalChat/coati/dataset/tokenization_utils.py b/applications/ColossalChat/coati/dataset/tokenization_utils.py new file mode 100755 index 000000000..7606bc2a9 --- /dev/null +++ b/applications/ColossalChat/coati/dataset/tokenization_utils.py @@ -0,0 +1,383 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +tokenization utils for constructing dataset for ppo, dpo, sft, rm +""" + +import warnings +from copy import deepcopy +from typing import Any, Dict, List, Union + +from coati.dataset.conversation import Conversation +from coati.dataset.utils import split_templated_prompt_into_chunks, tokenize_and_concatenate +from datasets import dataset_dict +from torch.utils.data import ConcatDataset, Dataset +from transformers import PreTrainedTokenizer + +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + +IGNORE_INDEX = -100 + +DSType = Union[Dataset, ConcatDataset, dataset_dict.Dataset] + + +def supervised_tokenize_sft( + data_point: Dict[str, str], + tokenizer: PreTrainedTokenizer, + conversation_template: Conversation = None, + ignore_index: int = None, + max_length: int = 4096, +) -> Dict[str, Union[int, str, List[int]]]: + """ + A tokenization function to tokenize an original pretraining data point as following + and calculate corresponding labels for sft training: + "Something here can be system message[user_line_start]User line[User line end][Assistant line start]Assistant line[Assistant line end]...[Assistant line end]Something here" + ^ + end_of_system_line_position + + Args: + data_point: the data point of the following format + {"messages": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}]} + tokenizer: the tokenizer whose + conversation_template: the conversation template to apply + ignore_index: the ignore index when calculate loss during training + max_length: the maximum context length + """ + + if ignore_index is None: + ignore_index = IGNORE_INDEX + + messages = data_point["messages"] + template = deepcopy(conversation_template) + template.messages = [] + + for mess in messages: + from_str = mess["from"] + if from_str.lower() == "human": + from_str = "user" + elif from_str.lower() == "assistant": + from_str = "assistant" + else: + raise ValueError(f"Unsupported role {from_str.lower()}") + + template.append_message(from_str, mess["content"]) + + if len(template.messages) % 2 != 0: + template.messages = template.messages[0:-1] + + # `target_turn_index` is the number of turns which exceeds `max_length - 1` for the first time. + turns = [i for i in range(1, len(messages) // 2 + 1)] + + lo, hi = 0, len(turns) + while lo < hi: + mid = (lo + hi) // 2 + if max_length - 1 < len( + tokenizer([template.get_prompt(2 * turns[mid] - 1)], add_special_tokens=False)["input_ids"][0] + ): + hi = mid + else: + lo = mid + 1 + target_turn_index = lo + + # The tokenized length for first turn already exceeds `max_length - 1`. + if target_turn_index - 1 < 0: + warnings.warn("The tokenized length for first turn already exceeds `max_length - 1`.") + return dict( + input_ids=None, + labels=None, + inputs_decode=None, + labels_decode=None, + seq_length=None, + seq_category=None, + ) + + target_turn = turns[target_turn_index - 1] + prompt = template.get_prompt(2 * target_turn) + chunks, require_loss = split_templated_prompt_into_chunks(template.messages[: 2 * target_turn], prompt) + tokenized, starts, ends = tokenize_and_concatenate(tokenizer, chunks, require_loss) + + labels = [ignore_index] * len(tokenized) + label_decode = [] + for start, end in zip(starts, ends): + if end == len(tokenized): + tokenized = tokenized + [tokenizer.eos_token_id] + labels = labels + [ignore_index] + labels[start : end + 1] = tokenized[start : end + 1] + label_decode.append(tokenizer.decode(tokenized[start : end + 1], skip_special_tokens=False)) + + if tokenizer.bos_token_id is not None: + if tokenized[0] != tokenizer.bos_token_id: + tokenized = [tokenizer.bos_token_id] + tokenized + labels = [ignore_index] + labels + + if tokenizer.eos_token_id is not None: + # Force to add eos token at the end of the tokenized sequence + if tokenized[-1] != tokenizer.eos_token_id: + tokenized = tokenized + [tokenizer.eos_token_id] + labels = labels + [tokenizer.eos_token_id] + else: + labels[-1] = tokenizer.eos_token_id + + # For some model without bos/eos may raise the following errors + try: + inputs_decode = tokenizer.decode(tokenized) + except TypeError as e: + raise TypeError(str(e) + f"\nUnable to decode input_ids: {tokenized}") + + # Check if all labels are ignored, this may happen when the tokenized length is too long + if labels.count(ignore_index) == len(labels): + return dict( + input_ids=None, + labels=None, + inputs_decode=None, + labels_decode=None, + seq_length=None, + seq_category=None, + ) + + return dict( + input_ids=tokenized, + labels=labels, + inputs_decode=inputs_decode, + labels_decode=label_decode, + seq_length=len(tokenized), + seq_category=data_point["category"] if "category" in data_point else "None", + ) + + +def tokenize_prompt_dataset( + data_point: Dict[str, str], + tokenizer: PreTrainedTokenizer, + conversation_template: Conversation = None, + ignore_index: int = None, + max_length: int = 4096, +) -> Dict[str, Union[int, str, List[int]]]: + """ + A tokenization function to tokenize an original pretraining data point as following for ppo training: + "Something here can be system message[user_line_start]User line[User line end][Assistant line start]Assistant line[Assistant line end]...[Assistant line start]" + Args: + data_point: the data point of the following format + {"messages": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}]} + tokenizer: the tokenizer whose + conversation_template: the conversation template to apply + ignore_index: the ignore index when calculate loss during training + max_length: the maximum context length + """ + if ignore_index is None: + ignore_index = IGNORE_INDEX + + messages = data_point["messages"] + template = deepcopy(conversation_template) + template.messages = [] + + for mess in messages: + from_str = mess["from"] + if from_str.lower() == "human": + from_str = "user" + elif from_str.lower() == "assistant": + from_str = "assistant" + else: + raise ValueError(f"Unsupported role {from_str.lower()}") + + template.append_message(from_str, mess["content"]) + + # `target_turn_index` is the number of turns which exceeds `max_length - 1` for the first time. + target_turn = len(template.messages) + if target_turn % 2 != 1: + # exclude the answer if provided. keep only the prompt + target_turn = target_turn - 1 + + # Prepare data + prompt = template.get_prompt(target_turn, add_generation_prompt=True) + tokenized = tokenizer([prompt], add_special_tokens=False)["input_ids"][0] + if tokenizer.bos_token_id is not None: + if tokenized[0] != tokenizer.bos_token_id: + tokenized = [tokenizer.bos_token_id] + tokenized + + # Skip overlength data + if max_length - 1 < len(tokenized): + return dict( + input_ids=None, + inputs_decode=None, + seq_length=None, + seq_category=None, + ) + + # `inputs_decode` can be used to check whether the tokenization method is true. + return dict( + input_ids=tokenized, + inputs_decode=tokenizer.decode(tokenized), + seq_length=len(tokenized), + seq_category=data_point["category"] if "category" in data_point else "None", + ) + + +def apply_rlhf_data_format( + template: Conversation, tokenizer: Any, context_len: int, mask_out_target_assistant_line_end=False +): + target_turn = int(len(template.messages) / 2) + prompt = template.get_prompt(target_turn * 2) + chunks, require_loss = split_templated_prompt_into_chunks(template.messages[: 2 * target_turn], prompt) + tokenized, starts, ends = tokenize_and_concatenate(tokenizer, chunks, require_loss) + loss_mask = [0] * len(tokenized) + mask_token = tokenizer.eos_token_id or tokenizer.pad_token_id + if mask_token is None: + mask_token = 1 # If the tokenizer doesn't have eos_token or pad_token: Qwen + + label_decode = [] + for start, end in zip(starts[-1:], ends[-1:]): + # only the last round (chosen/rejected) counts + if end == len(tokenized): + tokenized = tokenized + [tokenizer.eos_token_id] + loss_mask = loss_mask + [1] + loss_mask[start : end + 1] = [1] * len(loss_mask[start : end + 1]) + label_decode.append(tokenizer.decode(tokenized[start : end + 1], skip_special_tokens=False)) + if tokenizer.bos_token_id is not None: + if tokenized[0] != tokenizer.bos_token_id: + tokenized = [tokenizer.bos_token_id] + tokenized + loss_mask = [0] + loss_mask + + if tokenizer.eos_token_id is not None: + # Force to add eos token at the end of the tokenized sequence + if tokenized[-1] != tokenizer.eos_token_id: + tokenized = tokenized + [tokenizer.eos_token_id] + loss_mask = loss_mask + [1] + else: + loss_mask[-1] = 1 + + return {"input_ids": tokenized, "loss_mask": loss_mask, "label_decode": label_decode} + + +def tokenize_rlhf( + data_point: Dict[str, str], + tokenizer: PreTrainedTokenizer, + conversation_template: Conversation = None, + ignore_index: int = None, + max_length: int = 4096, +) -> Dict[str, Union[int, str, List[int]]]: + """ + A tokenization function to tokenize an original pretraining data point as following: + {"context": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}], + "chosen": {"from": "assistant", "content": "xxx"}, "rejected": {"from": "assistant", "content": "xxx"}} + """ + if ignore_index is None: + ignore_index = IGNORE_INDEX + + context = data_point["context"] + template = deepcopy(conversation_template) + template.clear() + + for mess in context: + from_str = mess["from"] + if from_str.lower() == "human": + from_str = "user" + elif from_str.lower() == "assistant": + from_str = "assistant" + else: + raise ValueError(f"Unsupported role {from_str.lower()}") + + if len(template.messages) > 0 and from_str == template.messages[-1]["role"]: + # Concate adjacent message from the same role + template.messages[-1]["content"] = str(template.messages[-1]["content"] + " " + mess["content"]) + else: + template.append_message(from_str, mess["content"]) + + if len(template.messages) % 2 != 1: + warnings.warn( + "Please make sure leading context starts and ends with a line from human\nLeading context: " + + str(template.messages) + ) + return dict( + chosen_input_ids=None, + chosen_loss_mask=None, + chosen_label_decode=None, + rejected_input_ids=None, + rejected_loss_mask=None, + rejected_label_decode=None, + ) + round_of_context = int((len(template.messages) - 1) / 2) + + assert context[-1]["from"].lower() == "human", "The last message in context should be from human." + chosen = deepcopy(template) + rejected = deepcopy(template) + + for round in range(len(data_point["chosen"])): + from_str = data_point["chosen"][round]["from"] + if from_str.lower() == "human": + from_str = "user" + elif from_str.lower() == "assistant": + from_str = "assistant" + else: + raise ValueError(f"Unsupported role {from_str.lower()}") + chosen.append_message(from_str, data_point["chosen"][round]["content"]) + + for round in range(len(data_point["rejected"])): + from_str = data_point["rejected"][round]["from"] + if from_str.lower() == "human": + from_str = "user" + elif from_str.lower() == "assistant": + from_str = "assistant" + else: + raise ValueError(f"Unsupported role {from_str.lower()}") + rejected.append_message(from_str, data_point["rejected"][round]["content"]) + + ( + chosen_input_ids, + chosen_loss_mask, + chosen_label_decode, + rejected_input_ids, + rejected_loss_mask, + rejected_label_decode, + ) = (None, None, None, None, None, None) + if ( + len(tokenizer([chosen.get_prompt(len(chosen.messages))], add_special_tokens=False)["input_ids"][0]) + <= max_length - 1 + and len(tokenizer([rejected.get_prompt(len(rejected.messages))], add_special_tokens=False)["input_ids"][0]) + <= max_length - 1 + ): + chosen_data_packed = apply_rlhf_data_format(chosen, tokenizer, round_of_context) + (chosen_input_ids, chosen_loss_mask, chosen_label_decode) = ( + chosen_data_packed["input_ids"], + chosen_data_packed["loss_mask"], + chosen_data_packed["label_decode"], + ) + + rejected_data_packed = apply_rlhf_data_format( + rejected, tokenizer, round_of_context, mask_out_target_assistant_line_end=True + ) + (rejected_input_ids, rejected_loss_mask, rejected_label_decode) = ( + rejected_data_packed["input_ids"], + rejected_data_packed["loss_mask"], + rejected_data_packed["label_decode"], + ) + + # Check if loss mask is all 0s (no loss), this may happen when the tokenized length is too long + if chosen_loss_mask.count(0) == len(chosen_loss_mask) or rejected_loss_mask.count(0) == len(rejected_loss_mask): + return dict( + chosen_input_ids=None, + chosen_loss_mask=None, + chosen_label_decode=None, + rejected_input_ids=None, + rejected_loss_mask=None, + rejected_label_decode=None, + ) + + return { + "chosen_input_ids": chosen_input_ids, + "chosen_loss_mask": chosen_loss_mask, + "chosen_label_decode": chosen_label_decode, + "rejected_input_ids": rejected_input_ids, + "rejected_loss_mask": rejected_loss_mask, + "rejected_label_decode": rejected_label_decode, + } + else: + return dict( + chosen_input_ids=None, + chosen_loss_mask=None, + chosen_label_decode=None, + rejected_input_ids=None, + rejected_loss_mask=None, + rejected_label_decode=None, + ) diff --git a/applications/ColossalChat/coati/dataset/utils.py b/applications/ColossalChat/coati/dataset/utils.py new file mode 100755 index 000000000..ada2afef0 --- /dev/null +++ b/applications/ColossalChat/coati/dataset/utils.py @@ -0,0 +1,138 @@ +import io +import json +from typing import Any, Dict, List + +import torch +import torch.distributed as dist +import torch.nn.functional as F +from transformers import PreTrainedTokenizer + + +def is_rank_0() -> bool: + return not dist.is_initialized() or dist.get_rank() == 0 + + +def _make_r_io_base(f, mode: str): + if not isinstance(f, io.IOBase): + f = open(f, mode=mode) + return f + + +def jload(f, mode="r"): + """Load a .json file into a dictionary.""" + f = _make_r_io_base(f, mode) + jdict = json.load(f) + f.close() + return jdict + + +def read_string_by_schema(data: Dict[str, Any], schema: str) -> str: + """ + Read a feild of the dataset be schema + Args: + data: Dict[str, Any] + schema: cascaded feild names seperated by '.'. e.g. person.name.first will access data['person']['name']['first'] + """ + keys = schema.split(".") + result = data + for key in keys: + result = result.get(key, None) + if result is None: + return "" + assert isinstance(result, str), f"dataset element is not a string: {result}" + return result + + +def pad_to_max_len( + sequence: List[torch.Tensor], max_length: int, padding_value: int, batch_first: bool = True, padding_side="left" +): + """ + Args: + sequence: a batch of tensor of shape [batch_size, seq_len] if batch_first==True + """ + if padding_side == "left": + reversed_sequence = [seq.flip(dims=(0,)) for seq in sequence] + padded = torch.nn.utils.rnn.pad_sequence( + sequences=reversed_sequence, batch_first=batch_first, padding_value=padding_value + ) + to_pad = max_length - padded.size(1) + padded = F.pad(padded, (0, to_pad), value=padding_value) + return torch.flip(padded, dims=(1,)) + elif padding_side == "right": + padded = torch.nn.utils.rnn.pad_sequence( + sequences=sequence, batch_first=batch_first, padding_value=padding_value + ) + to_pad = max_length - padded.size(1) + return F.pad(padded, (0, to_pad), value=padding_value) + else: + raise RuntimeError(f"`padding_side` can only be `left` or `right`, " f"but now `{padding_side}`") + + +def chuncate_sequence(sequence: List[torch.Tensor], max_length: int, dtype: Any): + """ + Args: + sequence: a batch of tensor of shape [batch_size, seq_len] if batch_first==True + """ + return [ + torch.Tensor(seq[:max_length]).to(dtype) if len(seq) > max_length else torch.Tensor(seq).to(dtype) + for seq in sequence + ] + + +def find_first_occurrence_subsequence(seq: torch.Tensor, subseq: torch.Tensor, start_index: int = 0) -> int: + if subseq is None: + return 0 + for i in range(start_index, len(seq) - len(subseq) + 1): + if torch.all(seq[i : i + len(subseq)] == subseq): + return i + return -1 + + +def tokenize_and_concatenate(tokenizer: PreTrainedTokenizer, text: List[str], require_loss: List[bool]): + """ + Tokenizes a list of texts using the provided tokenizer and concatenates the tokenized outputs. + + Args: + tokenizer (PreTrainedTokenizer): The tokenizer to use for tokenization. + text (List[str]): The list of texts to tokenize. + require_loss (List[bool]): A list of boolean values indicating whether each text requires loss calculation. + + Returns: + Tuple[List[int], List[int], List[int]]: A tuple containing the concatenated tokenized input ids, + the start positions of loss spans, and the end positions of loss spans. + """ + input_ids = [] + loss_starts = [] + loss_ends = [] + for s, r in zip(text, require_loss): + tokenized = tokenizer(s, add_special_tokens=False)["input_ids"] + if r: + loss_starts.append(len(input_ids)) + loss_ends.append(len(input_ids) + len(tokenized)) + input_ids.extend(tokenized) + return input_ids, loss_starts, loss_ends + + +def split_templated_prompt_into_chunks(messages: List[Dict[str, str]], prompt: str): + # Seperate templated prompt into chunks by human/assistant's lines, prepare data for tokenize_and_concatenate + start_idx = 0 + chunks = [] + require_loss = [] + for line in messages: + first_occur = prompt.find(line["content"], start_idx) + if prompt[first_occur - 1] != " ": + chunks.append(prompt[start_idx:first_occur]) + chunks.append(prompt[first_occur : first_occur + len(line["content"])]) + else: + chunks.append(prompt[start_idx : first_occur - 1]) + chunks.append(prompt[first_occur - 1 : first_occur + len(line["content"])]) + start_idx = first_occur + len(line["content"]) + if line["role"].lower() == "assistant": + require_loss.append(False) + require_loss.append(True) + else: + require_loss.append(False) + require_loss.append(False) + chunks.append(prompt[start_idx:]) + require_loss.append(False) + return chunks, require_loss diff --git a/applications/Chat/coati/experience_buffer/__init__.py b/applications/ColossalChat/coati/experience_buffer/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/experience_buffer/__init__.py rename to applications/ColossalChat/coati/experience_buffer/__init__.py diff --git a/applications/Chat/coati/experience_buffer/base.py b/applications/ColossalChat/coati/experience_buffer/base.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/experience_buffer/base.py rename to applications/ColossalChat/coati/experience_buffer/base.py diff --git a/applications/Chat/coati/experience_buffer/naive.py b/applications/ColossalChat/coati/experience_buffer/naive.py old mode 100644 new mode 100755 similarity index 86% rename from applications/Chat/coati/experience_buffer/naive.py rename to applications/ColossalChat/coati/experience_buffer/naive.py index d47b67dbe..b912df268 --- a/applications/Chat/coati/experience_buffer/naive.py +++ b/applications/ColossalChat/coati/experience_buffer/naive.py @@ -1,13 +1,16 @@ import random -import warnings from typing import List import torch from coati.experience_maker.base import Experience +from colossalai.logging import get_dist_logger + from .base import ExperienceBuffer from .utils import BufferItem, make_experience_batch, split_experience_batch +logger = get_dist_logger() + class NaiveExperienceBuffer(ExperienceBuffer): """Naive experience buffer class. It stores experience. @@ -35,7 +38,7 @@ class NaiveExperienceBuffer(ExperienceBuffer): if self.limit > 0: samples_to_remove = len(self.items) - self.limit if samples_to_remove > 0: - warnings.warn(f"Experience buffer is full. Removing {samples_to_remove} samples.") + logger.warning(f"Experience buffer is full. Removing {samples_to_remove} samples.") self.items = self.items[samples_to_remove:] def clear(self) -> None: @@ -43,6 +46,12 @@ class NaiveExperienceBuffer(ExperienceBuffer): @torch.no_grad() def sample(self) -> Experience: + """ + Randomly samples experiences from the buffer. + + Returns: + A batch of sampled experiences. + """ items = random.sample(self.items, self.sample_batch_size) experience = make_experience_batch(items) if self.cpu_offload: diff --git a/applications/Chat/coati/experience_buffer/utils.py b/applications/ColossalChat/coati/experience_buffer/utils.py old mode 100644 new mode 100755 similarity index 94% rename from applications/Chat/coati/experience_buffer/utils.py rename to applications/ColossalChat/coati/experience_buffer/utils.py index baedbebd1..c4807d179 --- a/applications/Chat/coati/experience_buffer/utils.py +++ b/applications/ColossalChat/coati/experience_buffer/utils.py @@ -26,6 +26,7 @@ class BufferItem: action_log_probs: torch.Tensor values: torch.Tensor reward: torch.Tensor + kl: torch.Tensor advantages: torch.Tensor attention_mask: Optional[torch.LongTensor] action_mask: Optional[torch.BoolTensor] @@ -34,7 +35,7 @@ class BufferItem: def split_experience_batch(experience: Experience) -> List[BufferItem]: batch_size = experience.sequences.size(0) batch_kwargs = [{} for _ in range(batch_size)] - keys = ("sequences", "action_log_probs", "values", "reward", "advantages", "attention_mask", "action_mask") + keys = ("sequences", "action_log_probs", "values", "reward", "kl", "advantages", "attention_mask", "action_mask") for key in keys: value = getattr(experience, key) if isinstance(value, torch.Tensor): @@ -63,7 +64,7 @@ def _zero_pad_sequences(sequences: List[torch.Tensor], side: str = "left") -> to def make_experience_batch(items: List[BufferItem]) -> Experience: kwargs = {} to_pad_keys = set(("action_log_probs", "action_mask")) - keys = ("sequences", "action_log_probs", "values", "reward", "advantages", "attention_mask", "action_mask") + keys = ("sequences", "action_log_probs", "values", "reward", "kl", "advantages", "attention_mask", "action_mask") for key in keys: vals = [getattr(item, key) for item in items] if key in to_pad_keys: diff --git a/applications/Chat/coati/experience_maker/__init__.py b/applications/ColossalChat/coati/experience_maker/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/experience_maker/__init__.py rename to applications/ColossalChat/coati/experience_maker/__init__.py diff --git a/applications/Chat/coati/experience_maker/base.py b/applications/ColossalChat/coati/experience_maker/base.py old mode 100644 new mode 100755 similarity index 74% rename from applications/Chat/coati/experience_maker/base.py rename to applications/ColossalChat/coati/experience_maker/base.py index 0731f6e0f..55054c3a0 --- a/applications/Chat/coati/experience_maker/base.py +++ b/applications/ColossalChat/coati/experience_maker/base.py @@ -3,7 +3,8 @@ from dataclasses import dataclass from typing import Optional import torch -from coati.models.base import Actor, Critic, RewardModel +from coati.models import Critic, RewardModel +from transformers import PreTrainedModel @dataclass @@ -28,6 +29,7 @@ class Experience: action_log_probs: torch.Tensor values: torch.Tensor reward: torch.Tensor + kl: torch.Tensor advantages: torch.Tensor attention_mask: Optional[torch.LongTensor] action_mask: Optional[torch.BoolTensor] @@ -39,6 +41,7 @@ class Experience: self.values = self.values.to(device) self.reward = self.reward.to(device) self.advantages = self.advantages.to(device) + self.kl = self.kl.to(device) if self.attention_mask is not None: self.attention_mask = self.attention_mask.to(device) if self.action_mask is not None: @@ -50,6 +53,7 @@ class Experience: self.values = self.values.pin_memory() self.reward = self.reward.pin_memory() self.advantages = self.advantages.pin_memory() + self.kl = self.kl.pin_memory() if self.attention_mask is not None: self.attention_mask = self.attention_mask.pin_memory() if self.action_mask is not None: @@ -58,7 +62,13 @@ class Experience: class ExperienceMaker(ABC): - def __init__(self, actor: Actor, critic: Critic, reward_model: RewardModel, initial_model: Actor) -> None: + """ + Base class for experience makers. + """ + + def __init__( + self, actor: PreTrainedModel, critic: Critic, reward_model: RewardModel, initial_model: PreTrainedModel + ) -> None: super().__init__() self.actor = actor self.critic = critic @@ -67,4 +77,14 @@ class ExperienceMaker(ABC): @abstractmethod def make_experience(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **generate_kwargs) -> Experience: - pass + """ + Abstract method to generate an experience. + + Args: + input_ids (torch.Tensor): The input tensor. + attention_mask (torch.Tensor): The attention mask tensor. + **generate_kwargs: Additional keyword arguments for generating the experience. + + Returns: + Experience: The generated experience. + """ diff --git a/applications/ColossalChat/coati/experience_maker/naive.py b/applications/ColossalChat/coati/experience_maker/naive.py new file mode 100755 index 000000000..945bb9557 --- /dev/null +++ b/applications/ColossalChat/coati/experience_maker/naive.py @@ -0,0 +1,180 @@ +""" +experience maker. +""" + +import torch +import torch.nn.functional as F +from coati.dataset.utils import find_first_occurrence_subsequence +from coati.models import Critic, RewardModel +from coati.models.generation import generate +from coati.models.utils import calc_action_log_probs, compute_reward +from transformers import PreTrainedModel, PreTrainedTokenizer + +from colossalai.logging import get_dist_logger + +from .base import Experience, ExperienceMaker + +logger = get_dist_logger() + +import torch.distributed as dist + + +def is_rank_0() -> bool: + return not dist.is_initialized() or dist.get_rank() == 0 + + +class NaiveExperienceMaker(ExperienceMaker): + """ + Naive experience maker. + """ + + def __init__( + self, + actor: PreTrainedModel, + critic: Critic, + reward_model: RewardModel, + initial_model: PreTrainedModel, + tokenizer: PreTrainedTokenizer, + kl_coef: float = 0.01, + gamma: float = 1.0, + lam: float = 0.95, + ) -> None: + super().__init__(actor, critic, reward_model, initial_model) + self.tokenizer = tokenizer + self.kl_coef = kl_coef + self.gamma = gamma + self.lam = lam + + @torch.no_grad() + def calculate_advantage(self, value: torch.Tensor, reward: torch.Tensor, num_actions: int) -> torch.Tensor: + """ + Calculates the advantage values for each action based on the value and reward tensors. + + Args: + value (torch.Tensor): Tensor containing the predicted values from critic. + reward (torch.Tensor): reward of the shape [B, len]. + num_actions (int): Number of actions. + + Returns: + torch.Tensor: Tensor containing the calculated advantages for each action. + """ + lastgaelam = 0 + advantages_reversed = [] + for t in reversed(range(num_actions)): + nextvalues = value[:, t + 1] if t < num_actions - 1 else 0.0 + delta = reward[:, t] + self.gamma * nextvalues - value[:, t] + lastgaelam = delta + self.gamma * self.lam * lastgaelam + advantages_reversed.append(lastgaelam) + advantages = torch.stack(advantages_reversed[::-1], dim=1) + return advantages + + @torch.no_grad() + def make_experience(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **generate_kwargs) -> Experience: + """ + Generates an experience using the given input_ids and attention_mask. + + Args: + input_ids (torch.Tensor): The input tensor containing the tokenized input sequence. + attention_mask (torch.Tensor): The attention mask tensor indicating which tokens to attend to. + **generate_kwargs: Additional keyword arguments for the generation process. + + Returns: + Experience: The generated experience object. + + """ + self.actor.eval() + self.critic.eval() + self.initial_model.eval() + self.reward_model.eval() + pad_token_id = self.tokenizer.pad_token_id + + stop_token_ids = generate_kwargs.get("stop_token_ids", None) + torch.manual_seed(41) # for tp, gurantee the same input for reward model + + sequences = generate(self.actor, input_ids, self.tokenizer, **generate_kwargs) + + # Pad to max length + sequences = F.pad(sequences, (0, generate_kwargs["max_length"] - sequences.size(1)), value=pad_token_id) + sequence_length = sequences.size(1) + + # Calculate auxiliary tensors + attention_mask = None + if pad_token_id is not None: + attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device) + + input_len = input_ids.size(1) + if stop_token_ids is None: + # End the sequence with eos token + eos_token_id = self.tokenizer.eos_token_id + if eos_token_id is None: + action_mask = torch.ones_like(sequences, dtype=torch.bool) + else: + # Left padding may be applied, only mask action + action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0 + action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input + else: + # stop_token_ids are given, generation ends with stop_token_ids + action_mask = torch.ones_like(sequences, dtype=torch.bool) + for i in range(sequences.size(0)): + stop_index = find_first_occurrence_subsequence( + sequences[i][input_len:], torch.tensor(stop_token_ids).to(sequences.device) + ) + if stop_index == -1: + # Sequence does not contain stop_token_ids, this should never happen BTW + logger.warning( + "Generated sequence does not contain stop_token_ids. Please check your chat template config" + ) + else: + # Keep stop tokens + stop_index = input_len + stop_index + action_mask[i, stop_index + len(stop_token_ids) :] = False + + generation_end_index = (action_mask == True).sum(dim=-1) - 1 + action_mask[:, :input_len] = False + action_mask = action_mask[:, 1:] + action_mask = action_mask[:, -(sequences.size(1) - input_len) :] + num_actions = action_mask.size(1) + + actor_output = self.actor(input_ids=sequences, attention_mask=attention_mask)["logits"] + action_log_probs = calc_action_log_probs(actor_output, sequences, num_actions) + + base_model_output = self.initial_model(input_ids=sequences, attention_mask=attention_mask)["logits"] + + base_action_log_probs = calc_action_log_probs(base_model_output, sequences, num_actions) + + # Convert to right padding for the reward model and the critic model + input_ids_rm = torch.zeros_like(sequences, device=sequences.device) + attention_mask_rm = torch.zeros_like(sequences, device=sequences.device) + for i in range(sequences.size(0)): + sequence = sequences[i] + bos_index = (sequence != pad_token_id).nonzero().reshape([-1])[0] + eos_index = generation_end_index[i] + sequence_to_pad = sequence[bos_index:eos_index] + sequence_padded = F.pad( + sequence_to_pad, (0, sequence_length - sequence_to_pad.size(0)), value=self.tokenizer.pad_token_id + ) + input_ids_rm[i] = sequence_padded + if sequence_length - sequence_to_pad.size(0) > 0: + attention_mask_rm[i, : sequence_to_pad.size(0) + 1] = 1 + else: + attention_mask_rm[i, :] = 1 + attention_mask_rm = attention_mask_rm.to(dtype=torch.bool) + + r = self.reward_model( + input_ids=input_ids_rm.to(dtype=torch.long, device=sequences.device), + attention_mask=attention_mask_rm.to(device=sequences.device), + ) + + value = self.critic( + input_ids=input_ids_rm.to(dtype=torch.long, device=sequences.device), + attention_mask=attention_mask_rm.to(device=sequences.device), + ) + reward, kl = compute_reward(r, self.kl_coef, action_log_probs, base_action_log_probs, action_mask=action_mask) + value = value[:, -num_actions:] * action_mask + advantages = self.calculate_advantage(value, reward, num_actions) + + advantages = advantages.detach() + value = value.detach() + r = r.detach() + + return Experience(sequences, action_log_probs, value, r, kl, advantages, attention_mask, action_mask) diff --git a/applications/ColossalChat/coati/models/__init__.py b/applications/ColossalChat/coati/models/__init__.py new file mode 100755 index 000000000..14073207f --- /dev/null +++ b/applications/ColossalChat/coati/models/__init__.py @@ -0,0 +1,24 @@ +from .base import BaseModel +from .critic import Critic +from .generation import generate, generate_streaming, prepare_inputs_fn, update_model_kwargs_fn +from .lora import convert_to_lora_module +from .loss import DpoLoss, LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss +from .reward_model import RewardModel +from .utils import disable_dropout + +__all__ = [ + "BaseModel", + "Critic", + "RewardModel", + "PolicyLoss", + "ValueLoss", + "LogSigLoss", + "LogExpLoss", + "convert_to_lora_module", + "DpoLoss", + "generate", + "generate_streaming", + "disable_dropout", + "update_model_kwargs_fn", + "prepare_inputs_fn", +] diff --git a/applications/ColossalChat/coati/models/base.py b/applications/ColossalChat/coati/models/base.py new file mode 100755 index 000000000..fcea9414b --- /dev/null +++ b/applications/ColossalChat/coati/models/base.py @@ -0,0 +1,58 @@ +""" +Base class for critic and reward model +""" + +from typing import Optional + +import torch +import torch.nn as nn +from transformers import AutoModel, PretrainedConfig + + +class BaseModel(nn.Module): + """ + Actor model base class. + + Args: + pretrained (str): path to pretrained model. + config (PretrainedConfig): PretrainedConfig used to initiate the base model. + **kwargs: all other kwargs as in AutoModel.from_pretrained + """ + + def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None: + super().__init__() + if pretrained is not None: + if config is not None: + # initialize with config and load weights from pretrained + self.model = AutoModel.from_pretrained(pretrained, config=config, **kwargs) + else: + # initialize with pretrained + self.model = AutoModel.from_pretrained(pretrained, **kwargs) + elif config is not None: + # initialize with config + self.model = AutoModel.from_config(config, **kwargs) + else: + raise ValueError("Either pretrained or config must be provided.") + + self.config = self.model.config + # create dummy input to get the size of the last hidden state + if "use_flash_attention_2" in kwargs: + self.model = self.model.cuda() + dummy_input = torch.zeros((1, 1), dtype=torch.long).to(self.model.device) + out = self.model(dummy_input) + self.last_hidden_state_size = out.last_hidden_state.shape[-1] + self.model = self.model.cpu() + # print("self.last_hidden_state_size: ",self.last_hidden_state_size) + + def resize_token_embeddings(self, *args, **kwargs): + """ + Resize the token embeddings of the model. + + Args: + *args: Variable length argument list. + **kwargs: Arbitrary keyword arguments. + + Returns: + The resized token embeddings. + """ + return self.model.resize_token_embeddings(*args, **kwargs) diff --git a/applications/ColossalChat/coati/models/critic.py b/applications/ColossalChat/coati/models/critic.py new file mode 100755 index 000000000..80340d9bd --- /dev/null +++ b/applications/ColossalChat/coati/models/critic.py @@ -0,0 +1,34 @@ +""" +Critic model +""" + +from typing import Optional + +import torch +import torch.nn as nn +from coati.models import BaseModel +from transformers import PretrainedConfig + + +class Critic(BaseModel): + """ + Critic model class. + + Args: + pretrained (str): path to pretrained model. + config (PretrainedConfig): PretrainedConfig used to initiate the base model. + """ + + def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None: + super().__init__(pretrained=pretrained, config=config, **kwargs) + # et last hidden state size with dummy input + self.value_head = nn.Linear(self.last_hidden_state_size, 1) + + def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: + outputs = self.model(input_ids, attention_mask=attention_mask) + last_hidden_states = outputs["last_hidden_state"] + sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), :].type( + self.value_head.weight.dtype + ) + values = self.value_head(sequence_hidden_states).squeeze(-1) # ensure shape is (B, sequence length) + return values diff --git a/applications/ColossalChat/coati/models/generation.py b/applications/ColossalChat/coati/models/generation.py new file mode 100755 index 000000000..b671ef124 --- /dev/null +++ b/applications/ColossalChat/coati/models/generation.py @@ -0,0 +1,428 @@ +from typing import Any, Callable, List, Optional + +import torch +import torch.distributed as dist +from transformers import PreTrainedTokenizer + +try: + from transformers.generation_logits_process import ( + LogitsProcessorList, + TemperatureLogitsWarper, + TopKLogitsWarper, + TopPLogitsWarper, + ) +except ImportError: + from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper + + +def _prepare_logits_processor( + top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None +) -> LogitsProcessorList: + """ + Prepare the logits processor list based on the given parameters. + + Args: + top_k (Optional[int]): The number of highest probability logits to keep for each token. + top_p (Optional[float]): The cumulative probability threshold for selecting tokens. + temperature (Optional[float]): The temperature value to apply to the logits. + + Returns: + LogitsProcessorList: The list of logits processors. + + """ + processor_list = LogitsProcessorList() + if temperature is not None and temperature != 1.0: + processor_list.append(TemperatureLogitsWarper(temperature)) + if top_k is not None and top_k != 0: + processor_list.append(TopKLogitsWarper(top_k)) + if top_p is not None and top_p < 1.0: + processor_list.append(TopPLogitsWarper(top_p)) + return processor_list + + +def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool: + """ + Check if the sequence generation is finished. + + Args: + unfinished_sequences (torch.Tensor): Tensor indicating the unfinished sequences. + + Returns: + bool: True if all sequences are finished, False otherwise. + """ + if dist.is_initialized() and dist.get_world_size() > 1: + # consider DP + unfinished_sequences = unfinished_sequences.clone() + dist.all_reduce(unfinished_sequences) + return unfinished_sequences.max() == 0 + + +def update_model_kwargs_fn(outputs: dict, new_mask, **model_kwargs) -> dict: + """ + Update the model keyword arguments based on the outputs and new mask. + + Args: + outputs (dict): The outputs from the model. + new_mask: The new attention mask. + **model_kwargs: Additional model keyword arguments. + + Returns: + dict: The updated model keyword arguments. + """ + + if "past_key_values" in outputs: + model_kwargs["past_key_values"] = outputs["past_key_values"] + else: + model_kwargs["past_key_values"] = None + + # update token_type_ids with last value + if "token_type_ids" in model_kwargs: + token_type_ids = model_kwargs["token_type_ids"] + model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) + + # update attention mask + if "attention_mask" in model_kwargs: + attention_mask = model_kwargs["attention_mask"] + model_kwargs["attention_mask"] = torch.cat([attention_mask, new_mask], dim=-1) + + return model_kwargs + + +def prepare_inputs_fn(input_ids: torch.Tensor, pad_token_id: int, **model_kwargs) -> dict: + model_kwargs["input_ids"] = input_ids + return model_kwargs + + +def _sample( + model: Any, + input_ids: torch.Tensor, + max_length: int, + early_stopping: bool = True, + eos_token_id: Optional[int] = None, + pad_token_id: Optional[int] = None, + stop_token_ids: Optional[List[int]] = None, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + temperature: Optional[float] = None, + max_new_tokens: int = None, + prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, + update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, + stream_interval: int = 2, + **model_kwargs, +) -> torch.Tensor: + """ + Generates new tokens using the given model and input_ids. + + Args: + model (Any): The model used for token generation. + input_ids (torch.Tensor): The input tensor containing the initial tokens. + max_length (int): The maximum length of the generated tokens. + early_stopping (bool, optional): Whether to stop generating tokens early if all sequences are finished. Defaults to True. + eos_token_id (int, optional): The ID of the end-of-sequence token. Defaults to None. + pad_token_id (int, optional): The ID of the padding token. Defaults to None. + stop_token_ids (List[int], optional): A list of token IDs that, if encountered, will stop the generation process. Defaults to None. + top_k (int, optional): The number of top-k tokens to consider during sampling. Defaults to None. + top_p (float, optional): The cumulative probability threshold for top-p sampling. Defaults to None. + temperature (float, optional): The temperature value for token sampling. Defaults to None. + max_new_tokens (int, optional): The maximum number of new tokens to generate. Defaults to None. + prepare_inputs_fn (Callable[[torch.Tensor, Any], dict], optional): A function to prepare the model inputs. Defaults to None. + update_model_kwargs_fn (Callable[[dict, Any], dict], optional): A function to update the model kwargs. Defaults to None. + stream_interval (int, optional): The interval for streaming generation. Defaults to 2. + **model_kwargs: Additional keyword arguments for the model. + + Returns: + torch.Tensor: The tensor containing the generated tokens. + """ + context_length = input_ids.size(1) + if max_new_tokens is None: + max_new_tokens = max_length - context_length + if context_length + max_new_tokens > max_length or max_new_tokens == 0: + return input_ids + + logits_processor = _prepare_logits_processor(top_k, top_p, temperature) + unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) + past = None + for i in range(context_length, context_length + max_new_tokens): + # Calculate attention mask + if "attention_mask" not in model_kwargs: + model_kwargs["attention_mask"] = input_ids.ne(pad_token_id) + model_inputs = ( + prepare_inputs_fn(input_ids, past=past, **model_kwargs) + if prepare_inputs_fn is not None + else {"input_ids": input_ids, "attention_mask": input_ids.ne(pad_token_id)} + ) + outputs = model(**model_inputs) + + if "past_key_values" in outputs: + past = outputs.past_key_values + elif "mems" in outputs: + past = outputs.mems + + # NOTE: this is correct only in left padding mode + next_token_logits = outputs["logits"][:, -1, :] + next_token_logits = logits_processor(input_ids, next_token_logits) + + # Sample + probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float) + next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) + + # Finished sentences should have their next token be a padding token + if eos_token_id is not None: + assert pad_token_id is not None, "If `eos_token_id` is defined, make sure that `pad_token_id` is defined." + next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) + + # Update generated ids, model inputs for next step + input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) + + if update_model_kwargs_fn is not None: + model_kwargs = update_model_kwargs_fn(outputs, model_kwargs) + + # If eos_token was found in one sentence, set sentence to finished + if eos_token_id is not None: + unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long()) + + if stop_token_ids is not None: + # If the last len(stop_token_ids) tokens of input_ids are equal to stop_token_ids, set sentence to finished. + tokens_to_check = input_ids[:, -len(stop_token_ids) :] + unfinished_sequences = unfinished_sequences.mul( + torch.any(tokens_to_check != torch.LongTensor(stop_token_ids).to(input_ids.device), dim=1).long() + ) + + # Stop when each sentence is finished if early_stopping=True + if (early_stopping and _is_sequence_finished(unfinished_sequences)) or i == context_length + max_new_tokens - 1: + if i == context_length + max_new_tokens - 1: + # Force to end with stop token ids + input_ids[input_ids[:, -1] != pad_token_id, -len(stop_token_ids) :] = ( + torch.LongTensor(stop_token_ids).to(input_ids.device).long() + ) + return input_ids + + +@torch.inference_mode() +def generate( + model: Any, + input_ids: torch.Tensor, + tokenizer: PreTrainedTokenizer, + max_length: int, + num_beams: int = 1, + do_sample: bool = True, + early_stopping: bool = True, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + temperature: Optional[float] = None, + prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, + update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, + **model_kwargs, +) -> torch.Tensor: + """Generate token sequence. The returned sequence is input_ids + generated_tokens. + + Args: + model (nn.Module): model + input_ids (torch.Tensor): input sequence + max_length (int): max length of the returned sequence + num_beams (int, optional): number of beams. Defaults to 1. + do_sample (bool, optional): whether to do sample. Defaults to True. + early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False. + top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None. + top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None. + temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None. + prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None. + update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None. + """ + assert tokenizer.padding_side == "left", "Current generation only supports left padding." + is_greedy_gen_mode = (num_beams == 1) and do_sample is False + is_sample_gen_mode = (num_beams == 1) and do_sample is True + is_beam_gen_mode = (num_beams > 1) and do_sample is False + if is_greedy_gen_mode: + raise NotImplementedError + elif is_sample_gen_mode: + # Run sample + res = _sample( + model, + input_ids, + max_length, + early_stopping=early_stopping, + eos_token_id=tokenizer.eos_token_id, + pad_token_id=tokenizer.pad_token_id, + top_k=top_k, + top_p=top_p, + temperature=temperature, + prepare_inputs_fn=prepare_inputs_fn, + update_model_kwargs_fn=update_model_kwargs_fn, + **model_kwargs, + ) + return res + elif is_beam_gen_mode: + raise NotImplementedError + else: + raise ValueError("Unsupported generation mode") + + +def _sample_streaming( + model: Any, + input_ids: torch.Tensor, + max_length: int, + early_stopping: bool = False, + eos_token_id: Optional[int] = None, + pad_token_id: Optional[int] = None, + stop_token_ids: Optional[List[int]] = None, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + temperature: Optional[float] = None, + max_new_tokens: int = None, + prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, + update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, + stream_interval: int = 2, + **model_kwargs, +) -> torch.Tensor: + """ + Generates new tokens using a streaming approach. + + Args: + model (Any): The model used for token generation. + input_ids (torch.Tensor): The input tensor containing the initial tokens. + max_length (int): The maximum length of the generated sequence. + early_stopping (bool, optional): Whether to stop generating tokens for a sequence if it is finished. Defaults to False. + eos_token_id (int, optional): The ID of the end-of-sequence token. Defaults to None. + pad_token_id (int, optional): The ID of the padding token. Defaults to None. + stop_token_ids (List[int], optional): A list of token IDs that, if encountered, will mark the sequence as finished. Defaults to None. + top_k (int, optional): The number of top-k tokens to consider during sampling. Defaults to None. + top_p (float, optional): The cumulative probability threshold for top-p sampling. Defaults to None. + temperature (float, optional): The temperature value for sampling. Defaults to None. + max_new_tokens (int, optional): The maximum number of new tokens to generate. Defaults to None. + prepare_inputs_fn (Callable[[torch.Tensor, Any], dict], optional): A function to prepare the model inputs. Defaults to None. + update_model_kwargs_fn (Callable[[dict, Any], dict], optional): A function to update the model keyword arguments. Defaults to None. + stream_interval (int, optional): The interval at which to yield the generated tokens. Defaults to 2. + **model_kwargs: Additional keyword arguments to be passed to the model. + + Yields: + torch.Tensor: The generated tokens at each step. + + Returns: + torch.Tensor: The final generated tokens. + """ + + context_length = input_ids.size(1) + if max_new_tokens is None: + max_new_tokens = max_length - context_length + if context_length + max_new_tokens > max_length or max_new_tokens == 0: + return input_ids + + logits_processor = _prepare_logits_processor(top_k, top_p, temperature) + unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) + + past = None + for i in range(context_length, context_length + max_new_tokens): + # calculate attention mask + if "attention_mask" not in model_kwargs: + model_kwargs["attention_mask"] = input_ids.ne(pad_token_id) + model_inputs = ( + prepare_inputs_fn(input_ids, past=past, **model_kwargs) + if prepare_inputs_fn is not None + else {"input_ids": input_ids, "attention_mask": input_ids.ne(pad_token_id)} + ) + outputs = model(**model_inputs) + if "past_key_values" in outputs: + past = outputs.past_key_values + elif "mems" in outputs: + past = outputs.mems + + # NOTE: this is correct only in left padding mode + next_token_logits = outputs["logits"][:, -1, :] + next_token_logits = logits_processor(input_ids, next_token_logits) + # sample + probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float) + next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) + + # finished sentences should have their next token be a padding token + if eos_token_id is not None: + assert pad_token_id is not None, "If `eos_token_id` is defined, make sure that `pad_token_id` is defined." + next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) + + # update generated ids, model inputs for next step + input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) + + if update_model_kwargs_fn is not None: + model_kwargs = update_model_kwargs_fn(outputs, model_kwargs) + + # if eos_token was found in one sentence, set sentence to finished + if eos_token_id is not None: + unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long()) + + if stop_token_ids is not None: + # If the last len(stop_token_ids) tokens of input_ids are equal to stop_token_ids, set sentence to finished. + tokens_to_check = input_ids[:, -len(stop_token_ids) :] + unfinished_sequences = unfinished_sequences.mul( + torch.any(tokens_to_check != torch.LongTensor(stop_token_ids).to(input_ids.device), dim=1).long() + ) + + # Stop when each sentence is finished if early_stopping=True + if ( + (early_stopping and _is_sequence_finished(unfinished_sequences)) + or (i - context_length) % stream_interval == 0 + or i == context_length + max_new_tokens - 1 + ): + yield input_ids + if early_stopping and _is_sequence_finished(unfinished_sequences): + break + + +@torch.inference_mode() +def generate_streaming( + model: Any, + input_ids: torch.Tensor, + tokenizer: PreTrainedTokenizer, + max_length: int, + num_beams: int = 1, + do_sample: bool = True, + early_stopping: bool = False, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + temperature: Optional[float] = None, + prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None, + update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None, + **model_kwargs, +): + """Generate token sequence. The returned sequence is input_ids + generated_tokens. + + Args: + model (nn.Module): model + input_ids (torch.Tensor): input sequence + max_length (int): max length of the returned sequence + num_beams (int, optional): number of beams. Defaults to 1. + do_sample (bool, optional): whether to do sample. Defaults to True. + early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False. + top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None. + top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None. + temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None. + prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None. + update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None. + """ + assert tokenizer.padding_side == "left", "Current generation only supports left padding." + is_greedy_gen_mode = (num_beams == 1) and do_sample is False + is_sample_gen_mode = (num_beams == 1) and do_sample is True + is_beam_gen_mode = (num_beams > 1) and do_sample is False + if is_greedy_gen_mode: + # run greedy search + raise NotImplementedError + elif is_sample_gen_mode: + # run sample + for res in _sample_streaming( + model, + input_ids, + max_length, + early_stopping=early_stopping, + eos_token_id=tokenizer.eos_token_id, + pad_token_id=tokenizer.pad_token_id, + top_k=top_k, + top_p=top_p, + temperature=temperature, + prepare_inputs_fn=prepare_inputs_fn, + update_model_kwargs_fn=update_model_kwargs_fn, + **model_kwargs, + ): + yield res + elif is_beam_gen_mode: + raise NotImplementedError + else: + raise ValueError("Unsupported generation mode") diff --git a/applications/Chat/coati/models/lora.py b/applications/ColossalChat/coati/models/lora.py old mode 100644 new mode 100755 similarity index 85% rename from applications/Chat/coati/models/lora.py rename to applications/ColossalChat/coati/models/lora.py index e9bd7b2ed..9553b00ff --- a/applications/Chat/coati/models/lora.py +++ b/applications/ColossalChat/coati/models/lora.py @@ -1,3 +1,7 @@ +""" +LORA utils +""" + import dataclasses import math import warnings @@ -8,6 +12,10 @@ import torch import torch.nn as nn import torch.nn.functional as F +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + @dataclasses.dataclass class LoRAManager: @@ -58,6 +66,10 @@ class LoraLinear(lora.LoRALayer, nn.Module): nn.init.zeros_(self.lora_B) def train(self, mode: bool = True): + """ + This function runs when model.train() is invoked. It is used to prepare the linear layer for training + """ + def T(w): return w.T if self.fan_in_fan_out else w @@ -101,6 +113,16 @@ class LoraLinear(lora.LoRALayer, nn.Module): def _lora_linear_wrapper(linear: nn.Linear, lora_rank: int) -> LoraLinear: + """ + Wraps a linear layer with LoRA functionality. + + Args: + linear (nn.Linear): The linear layer to be wrapped. + lora_rank (int): The rank of the LoRA decomposition. + + Returns: + LoraLinear: The wrapped linear layer with LoRA functionality. + """ assert ( lora_rank <= linear.in_features ), f"LoRA rank ({lora_rank}) must be less than or equal to in features ({linear.in_features})" @@ -109,6 +131,16 @@ def _lora_linear_wrapper(linear: nn.Linear, lora_rank: int) -> LoraLinear: def _convert_to_lora_recursively(module: nn.Module, lora_rank: int) -> None: + """ + Recursively converts the given module and its children to LoRA (Low-Rank Approximation) form. + + Args: + module (nn.Module): The module to convert to LoRA form. + lora_rank (int): The rank of the LoRA approximation. + + Returns: + None + """ for name, child in module.named_children(): if isinstance(child, nn.Linear): setattr(module, name, _lora_linear_wrapper(child, lora_rank)) @@ -131,23 +163,3 @@ def convert_to_lora_module(module: nn.Module, lora_rank: int, lora_train_bias: s _convert_to_lora_recursively(module, lora_rank) lora.mark_only_lora_as_trainable(module, lora_train_bias) return module - - -class LoRAModule(nn.Module): - """A LoRA module base class. All derived classes should call `convert_to_lora()` at the bottom of `__init__()`. - This class will convert all torch.nn.Linear layer to LoraLinear layer. - - Args: - lora_rank (int, optional): LoRA rank. 0 means LoRA is not applied. Defaults to 0. - lora_train_bias (str, optional): Whether LoRA train biases. - 'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers. - Defaults to 'none'. - """ - - def __init__(self, lora_rank: int = 0, lora_train_bias: str = "none") -> None: - super().__init__() - self.lora_rank = lora_rank - self.lora_train_bias = lora_train_bias - - def convert_to_lora(self) -> None: - convert_to_lora_module(self, self.lora_rank, self.lora_train_bias) diff --git a/applications/ColossalChat/coati/models/loss.py b/applications/ColossalChat/coati/models/loss.py new file mode 100755 index 000000000..aaef447a4 --- /dev/null +++ b/applications/ColossalChat/coati/models/loss.py @@ -0,0 +1,169 @@ +""" +loss functions +""" +from typing import Optional, Tuple + +import torch +import torch.nn as nn + +from .utils import masked_mean + + +class GPTLMLoss(nn.Module): + """ + GPT Language Model Loss + """ + + def __init__(self): + super().__init__() + # NOTE: default ignore_index is -100, which is equal to IGNORE_INDEX in sft_dataset.py + self.loss = nn.CrossEntropyLoss() + + def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + +class PolicyLoss(nn.Module): + """ + Policy Loss for PPO + """ + + def __init__(self, clip_eps: float = 0.2, skip_threshold: float = 20.0) -> None: + super().__init__() + self.clip_eps = clip_eps + self.skip_threshold = skip_threshold + + def forward( + self, + log_probs: torch.Tensor, + old_log_probs: torch.Tensor, + advantages: torch.Tensor, + action_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + skip = False + ratio_ = ((log_probs - old_log_probs) * action_mask).exp() + + # note that if dropout is disabled (recommanded), ratio will always be 1. + if ratio_.mean() > self.skip_threshold: + skip = True + + ratio = ratio_.clamp(0.0, 10.0) + surr1 = ratio * advantages + surr2 = ratio.clamp(1 - self.clip_eps, 1 + self.clip_eps) * advantages + loss = -torch.min(surr1, surr2) + loss = masked_mean(loss, action_mask) + loss = loss.mean() + return loss, skip, ratio_.max() + + +class ValueLoss(nn.Module): + """ + Value Loss for PPO + """ + + def __init__(self, clip_eps: float = 0.2) -> None: + super().__init__() + self.clip_eps = clip_eps + + def forward( + self, + values: torch.Tensor, + old_values: torch.Tensor, + advantage: torch.Tensor, + action_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + returns = advantage + old_values + values_clipped = old_values + (values - old_values).clamp(-self.clip_eps, self.clip_eps) + surr1 = (values_clipped - returns) ** 2 + surr2 = (values - returns) ** 2 + loss = torch.max(surr1, surr2) / torch.sum(action_mask) + loss = torch.sum(loss * action_mask) + return 0.5 * loss + + +class DpoLoss(nn.Module): + """ + Dpo loss + Details: https://arxiv.org/pdf/2305.18290.pdf + """ + + def __init__(self, beta: float = 0.1): + super().__init__() + self.beta = beta + + def forward( + self, + logprob_actor_chosen: torch.Tensor, + logprob_actor_reject: torch.Tensor, + logprob_ref_chosen: torch.Tensor, + logprob_ref_reject: torch.Tensor, + chosen_mask: torch.Tensor, + reject_mask: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Compute the DPO loss for a batch of policy and reference model log probabilities. + + # adapted from https://github.com/huggingface/trl/blob/main/trl/trainer/dpo_trainer.py#L328 + + Args: + logprob_actor_chosen: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,) + logprob_actor_reject: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,) + logprob_ref_chosen: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,) + logprob_ref_reject: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,) + + Returns: + A tuple of three tensors: (losses, chosen_rewards, rejected_rewards). + The losses tensor contains the DPO loss for each example in the batch. + The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. + """ + logprob_actor_chosen = logprob_actor_chosen * chosen_mask + logprob_actor_reject = logprob_actor_reject * reject_mask + if logprob_ref_chosen is not None and logprob_ref_reject is not None: + logprob_ref_chosen = logprob_ref_chosen * chosen_mask + logprob_ref_reject = logprob_ref_reject * reject_mask + if len(logprob_ref_chosen.shape) == 2: + ref_logratios = logprob_ref_chosen.sum(-1) - logprob_ref_reject.sum(-1) + else: + ref_logratios = logprob_ref_chosen.squeeze() - logprob_ref_reject.squeeze() + else: + # If no reference model is provided + ref_logratios = 0.0 + + pi_logratios = logprob_actor_chosen.sum(-1) - logprob_actor_reject.sum(-1) + logits = pi_logratios - ref_logratios + losses = -torch.nn.functional.logsigmoid(self.beta * logits) + + # Calculate rewards for logging + if logprob_ref_chosen is not None: + chosen_rewards = self.beta * (logprob_actor_chosen.sum(-1) - logprob_ref_chosen.sum(-1)).detach() + else: + chosen_rewards = self.beta * logprob_actor_chosen.sum(-1).detach() + if logprob_ref_reject is not None: + rejected_rewards = self.beta * (logprob_actor_reject.sum(-1) - logprob_ref_reject.sum(-1)).detach() + else: + rejected_rewards = self.beta * logprob_actor_reject.sum(-1).detach() + + return losses, chosen_rewards, rejected_rewards + + +class LogSigLoss(nn.Module): + """ + Pairwise Loss for Reward Model + Details: https://arxiv.org/abs/2203.02155 + """ + + def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor: + return -torch.nn.functional.logsigmoid(chosen_reward - reject_reward).mean() + + +class LogExpLoss(nn.Module): + """ + Pairwise Loss for Reward Model + Details: https://arxiv.org/abs/2204.05862 + """ + + def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor: + loss = torch.log(1 + torch.exp(reject_reward - chosen_reward)).mean() + return loss diff --git a/applications/ColossalChat/coati/models/reward_model.py b/applications/ColossalChat/coati/models/reward_model.py new file mode 100755 index 000000000..18c5eca41 --- /dev/null +++ b/applications/ColossalChat/coati/models/reward_model.py @@ -0,0 +1,38 @@ +""" +reward model +""" +from typing import Optional + +import torch +import torch.nn as nn +from coati.models import BaseModel +from transformers import PretrainedConfig + + +class RewardModel(BaseModel): + """ + Reward model class. + + Args: + pretrained str: huggingface or local model path + config: PretrainedConfig object + **kwargs: all other kwargs as in AutoModel.from_pretrained + """ + + def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None: + super().__init__(pretrained=pretrained, config=config, **kwargs) + self.value_head = nn.Linear(self.last_hidden_state_size, 1) + self.value_head.weight.data.normal_(mean=0.0, std=1 / (self.last_hidden_state_size + 1)) + + def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: + outputs = self.model(input_ids, attention_mask=attention_mask) + + last_hidden_states = outputs["last_hidden_state"] + sequence_lengths = torch.max(attention_mask * torch.arange(input_ids.size(1), device=input_ids.device), dim=1)[ + 0 + ] + sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths].type( + self.value_head.weight.dtype + ) + values = self.value_head(sequence_hidden_states).squeeze(-1) # Ensure shape is (B,) + return values diff --git a/applications/ColossalChat/coati/models/utils.py b/applications/ColossalChat/coati/models/utils.py new file mode 100755 index 000000000..ce672534c --- /dev/null +++ b/applications/ColossalChat/coati/models/utils.py @@ -0,0 +1,137 @@ +import json +import os +from typing import Any, Dict, Optional, Union + +import torch +import torch.nn.functional as F + + +def get_model_numel(model: torch.nn.Module) -> int: + return sum(p.numel() for p in model.parameters()) + + +def compute_reward( + r: Union[torch.Tensor, float], + kl_coef: float, + log_probs: torch.Tensor, + log_probs_base: torch.Tensor, + action_mask: Optional[torch.Tensor] = None, + reward_eps=5, +) -> torch.Tensor: + """ + Args: + log_probs: [batch_size, response_length] + log_probs_base: [batch_size, response_length] + action_mask: [batch_size, response_length] + r: float + Returns: + reward: [batch_size, response_length] + """ + log_ratio = log_probs - log_probs_base # address numerical instability issue + kl = -kl_coef * log_ratio * action_mask + reward = kl + r_clip = torch.clamp(r, -reward_eps, reward_eps) + for i in range(action_mask.size(0)): + assert action_mask[i].sum() > 0 + reward[i, : action_mask[i].sum()] += r_clip[i] + reward[i, action_mask[i].sum() :] *= 0 + return reward, ((log_ratio * (log_ratio < 10)).exp() - 1 - log_ratio) * action_mask + + +def _log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: + """ + Compute the log probabilities from logits for the given labels. + + Args: + logits (torch.Tensor): The input logits. + labels (torch.Tensor): The target labels. + + Returns: + torch.Tensor: The log probabilities corresponding to the labels. + """ + log_probs = F.log_softmax(logits, dim=-1) + log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) + return log_probs_labels.squeeze(-1) + + +def calc_action_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor: + """Calculate action log probs. + + Args: + output (torch.Tensor): Output tensor of Actor.forward.logits. + sequences (torch.LongTensor): Input sequences. + num_actions (int): Number of actions. + + Returns: + torch.Tensor: Action log probs. + """ + log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) + return log_probs[:, -num_actions:] + + +def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: + """ + Compute the masked mean of a tensor along a specified dimension. + + Args: + tensor (torch.Tensor): The input tensor. + mask (torch.Tensor): The mask tensor with the same shape as the input tensor. + dim (int, optional): The dimension along which to compute the mean. Default is 1. + + Returns: + torch.Tensor: The masked mean tensor. + + """ + tensor = tensor * mask + tensor = tensor.sum(dim=dim) + mask_sum = mask.sum(dim=dim) + mean = tensor / (mask_sum + 1e-8) + return mean + + +def calc_masked_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, mask: torch.Tensor) -> torch.Tensor: + """ + Calculate the masked log probabilities for a given sequence of logits. + + Args: + logits (torch.Tensor): The input logits tensor of shape (batch_size, sequence_length, vocab_size). + sequences (torch.LongTensor): The input sequence tensor of shape (batch_size, sequence_length). + mask (torch.Tensor): The mask tensor of shape (batch_size, sequence_length). + + Returns: + torch.Tensor: The masked log probabilities tensor of shape (batch_size, sequence_length - 1). + """ + # logits are probabilities of the next token, so we shift them to the left by one + log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) + return log_probs * mask + + +def load_json(file_path: Union[str, os.PathLike]) -> Dict[str, Any]: + """ + Load file in JSON format + """ + with open(file=file_path, mode="r", encoding="utf-8") as fp: + return json.load(fp) + + +def save_json(data: Dict[str, Any], file_path: Union[str, os.PathLike]) -> None: + """ + Save as JSON format + """ + with open(file=file_path, mode="w", encoding="utf-8") as fp: + json.dump(data, fp=fp, ensure_ascii=False, indent=4) + + +def disable_dropout(model: torch.nn.Module): + """ + Disables dropout in a PyTorch model. This is used in PPO Training + + Args: + model (torch.nn.Module): The PyTorch model. + + Returns: + None + """ + for module in model.modules(): + if isinstance(module, torch.nn.Dropout): + module.p = 0.0 diff --git a/applications/Chat/coati/quant/__init__.py b/applications/ColossalChat/coati/quant/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/quant/__init__.py rename to applications/ColossalChat/coati/quant/__init__.py diff --git a/applications/Chat/coati/quant/llama_gptq/__init__.py b/applications/ColossalChat/coati/quant/llama_gptq/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/quant/llama_gptq/__init__.py rename to applications/ColossalChat/coati/quant/llama_gptq/__init__.py diff --git a/applications/Chat/coati/quant/llama_gptq/loader.py b/applications/ColossalChat/coati/quant/llama_gptq/loader.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/quant/llama_gptq/loader.py rename to applications/ColossalChat/coati/quant/llama_gptq/loader.py diff --git a/applications/Chat/coati/quant/llama_gptq/model_utils.py b/applications/ColossalChat/coati/quant/llama_gptq/model_utils.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/quant/llama_gptq/model_utils.py rename to applications/ColossalChat/coati/quant/llama_gptq/model_utils.py diff --git a/applications/Chat/coati/quant/llama_gptq/quant.py b/applications/ColossalChat/coati/quant/llama_gptq/quant.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/quant/llama_gptq/quant.py rename to applications/ColossalChat/coati/quant/llama_gptq/quant.py diff --git a/applications/Chat/coati/quant/utils.py b/applications/ColossalChat/coati/quant/utils.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/quant/utils.py rename to applications/ColossalChat/coati/quant/utils.py diff --git a/applications/Chat/coati/ray/README.md b/applications/ColossalChat/coati/ray/README.md old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/README.md rename to applications/ColossalChat/coati/ray/README.md diff --git a/applications/Chat/coati/ray/__init__.py b/applications/ColossalChat/coati/ray/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/__init__.py rename to applications/ColossalChat/coati/ray/__init__.py diff --git a/applications/Chat/coati/ray/callbacks/__init__.py b/applications/ColossalChat/coati/ray/callbacks/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/callbacks/__init__.py rename to applications/ColossalChat/coati/ray/callbacks/__init__.py diff --git a/applications/Chat/coati/ray/callbacks/base.py b/applications/ColossalChat/coati/ray/callbacks/base.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/callbacks/base.py rename to applications/ColossalChat/coati/ray/callbacks/base.py diff --git a/applications/Chat/coati/ray/callbacks/performance_evaluator.py b/applications/ColossalChat/coati/ray/callbacks/performance_evaluator.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/callbacks/performance_evaluator.py rename to applications/ColossalChat/coati/ray/callbacks/performance_evaluator.py diff --git a/applications/Chat/coati/ray/detached_replay_buffer.py b/applications/ColossalChat/coati/ray/detached_replay_buffer.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/detached_replay_buffer.py rename to applications/ColossalChat/coati/ray/detached_replay_buffer.py diff --git a/applications/Chat/coati/ray/detached_trainer_base.py b/applications/ColossalChat/coati/ray/detached_trainer_base.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/detached_trainer_base.py rename to applications/ColossalChat/coati/ray/detached_trainer_base.py diff --git a/applications/Chat/coati/ray/detached_trainer_ppo.py b/applications/ColossalChat/coati/ray/detached_trainer_ppo.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/detached_trainer_ppo.py rename to applications/ColossalChat/coati/ray/detached_trainer_ppo.py diff --git a/applications/Chat/coati/ray/experience_maker_holder.py b/applications/ColossalChat/coati/ray/experience_maker_holder.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/experience_maker_holder.py rename to applications/ColossalChat/coati/ray/experience_maker_holder.py diff --git a/applications/Chat/coati/ray/lora_constructor.py b/applications/ColossalChat/coati/ray/lora_constructor.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/coati/ray/lora_constructor.py rename to applications/ColossalChat/coati/ray/lora_constructor.py diff --git a/applications/Chat/coati/ray/utils.py b/applications/ColossalChat/coati/ray/utils.py old mode 100644 new mode 100755 similarity index 97% rename from applications/Chat/coati/ray/utils.py rename to applications/ColossalChat/coati/ray/utils.py index b88140c0e..4882f00b7 --- a/applications/Chat/coati/ray/utils.py +++ b/applications/ColossalChat/coati/ray/utils.py @@ -75,7 +75,9 @@ def get_strategy_from_args(strategy: str): elif strategy == "colossalai_zero2": strategy_ = LowLevelZeroStrategy(stage=2, placement_policy="cuda") elif strategy == "colossalai_gemini_cpu": - strategy_ = GeminiStrategy(placement_policy="static", offload_optim_frac=1.0, offload_param_frac=1.0, initial_scale=2**5) + strategy_ = GeminiStrategy( + placement_policy="static", offload_optim_frac=1.0, offload_param_frac=1.0, initial_scale=2**5 + ) elif strategy == "colossalai_zero2_cpu": strategy_ = LowLevelZeroStrategy(stage=2, placement_policy="cpu") else: diff --git a/applications/ColossalChat/coati/trainer/__init__.py b/applications/ColossalChat/coati/trainer/__init__.py new file mode 100755 index 000000000..2eff8ca76 --- /dev/null +++ b/applications/ColossalChat/coati/trainer/__init__.py @@ -0,0 +1,7 @@ +from .base import OLTrainer, SLTrainer +from .dpo import DPOTrainer +from .ppo import PPOTrainer +from .rm import RewardModelTrainer +from .sft import SFTTrainer + +__all__ = ["SLTrainer", "OLTrainer", "RewardModelTrainer", "SFTTrainer", "PPOTrainer", "DPOTrainer"] diff --git a/applications/Chat/coati/trainer/base.py b/applications/ColossalChat/coati/trainer/base.py old mode 100644 new mode 100755 similarity index 80% rename from applications/Chat/coati/trainer/base.py rename to applications/ColossalChat/coati/trainer/base.py index 0a41d450d..63c903a51 --- a/applications/Chat/coati/trainer/base.py +++ b/applications/ColossalChat/coati/trainer/base.py @@ -1,6 +1,14 @@ +""" +Base trainers for online and offline training + SLTrainer: supervised learning trainer + pretrain, sft, dpo, reward model training + OLTrainer: online learning trainer + rlhf-ppo +""" + from abc import ABC, abstractmethod from contextlib import contextmanager -from typing import List +from typing import Callable, List import torch.nn as nn import tqdm @@ -8,8 +16,8 @@ from coati.experience_buffer import NaiveExperienceBuffer from coati.experience_maker import Experience from torch.optim import Optimizer -from .callbacks import Callback -from .strategies import Strategy +from colossalai.booster import Booster + from .utils import is_rank_0 @@ -26,16 +34,18 @@ class SLTrainer(ABC): def __init__( self, - strategy: Strategy, + booster: Booster, max_epochs: int, model: nn.Module, optimizer: Optimizer, + start_epoch: int = 0, ) -> None: super().__init__() - self.strategy = strategy + self.booster = booster self.max_epochs = max_epochs self.model = model self.optimizer = optimizer + self.start_epoch = start_epoch @abstractmethod def _train(self, epoch): @@ -45,19 +55,20 @@ class SLTrainer(ABC): def _eval(self, epoch): raise NotImplementedError() + @abstractmethod def _before_fit(self): raise NotImplementedError() def fit(self, *args, **kwargs): self._before_fit(*args, **kwargs) - for epoch in tqdm.trange(self.max_epochs, desc="Epochs", disable=not is_rank_0()): + for epoch in tqdm.trange(self.start_epoch, self.max_epochs, desc="Epochs", disable=not is_rank_0()): self._train(epoch) self._eval(epoch) -class OnPolicyTrainer(ABC): +class OLTrainer(ABC): """ - Base class for on-policy rl trainers, e.g. PPO. + Base class for online learning trainers, e.g. PPO. Args: strategy (Strategy):the strategy to use for training @@ -69,14 +80,16 @@ class OnPolicyTrainer(ABC): def __init__( self, - strategy: Strategy, + actor_booster: Booster, + critic_booster: Booster, data_buffer: NaiveExperienceBuffer, sample_buffer: bool, dataloader_pin_memory: bool, - callbacks: List[Callback] = [], + callbacks: List[Callable] = [], ) -> None: super().__init__() - self.strategy = strategy + self.actor_booster = actor_booster + self.critic_booster = critic_booster self.data_buffer = data_buffer self.sample_buffer = sample_buffer self.dataloader_pin_memory = dataloader_pin_memory @@ -141,6 +154,20 @@ class OnPolicyTrainer(ABC): """ raise NotImplementedError() + @abstractmethod + def _setup_update_phrase_dataload(self): + """ + Implement this method to setup dataloader for update phase. + """ + raise NotImplementedError() + + @abstractmethod + def _save_checkpoint(self, episode: int = 0): + """ + Implement this method to save checkpoint. + """ + raise NotImplementedError() + def _collect_phase(self, collect_step: int): self._on_make_experience_start() experience = self._make_experience(collect_step) @@ -178,11 +205,10 @@ class OnPolicyTrainer(ABC): for collect_step in tqdm.trange(num_collect_steps, desc="Collect steps", disable=not is_rank_0()): self._collect_phase(collect_step) if not self.sample_buffer: - # HACK(cwher): according to the design of boost API, dataloader should also be boosted, - # but it is impractical to adapt this pattern in RL training. Thus, I left dataloader unboosted. - # I only call strategy.setup_dataloader() to setup dataloader. - self.dataloader = self.strategy.setup_dataloader(self.data_buffer, self.dataloader_pin_memory) + self._setup_update_phrase_dataload() for update_step in tqdm.trange(num_update_steps, desc="Update steps", disable=not is_rank_0()): self._update_phase(update_step) # NOTE: this is for on-policy algorithms self.data_buffer.clear() + if self.save_interval > 0 and (episode + 1) % (self.save_interval) == 0: + self._save_checkpoint(episode + 1) diff --git a/applications/ColossalChat/coati/trainer/callbacks/__init__.py b/applications/ColossalChat/coati/trainer/callbacks/__init__.py new file mode 100644 index 000000000..a76548507 --- /dev/null +++ b/applications/ColossalChat/coati/trainer/callbacks/__init__.py @@ -0,0 +1,4 @@ +from .base import Callback +from .performance_evaluator import PerformanceEvaluator + +__all__ = ["Callback", "PerformanceEvaluator"] diff --git a/applications/Chat/coati/trainer/callbacks/base.py b/applications/ColossalChat/coati/trainer/callbacks/base.py similarity index 100% rename from applications/Chat/coati/trainer/callbacks/base.py rename to applications/ColossalChat/coati/trainer/callbacks/base.py diff --git a/applications/Chat/coati/trainer/callbacks/performance_evaluator.py b/applications/ColossalChat/coati/trainer/callbacks/performance_evaluator.py similarity index 92% rename from applications/Chat/coati/trainer/callbacks/performance_evaluator.py rename to applications/ColossalChat/coati/trainer/callbacks/performance_evaluator.py index b286c766c..86384e5e3 100644 --- a/applications/Chat/coati/trainer/callbacks/performance_evaluator.py +++ b/applications/ColossalChat/coati/trainer/callbacks/performance_evaluator.py @@ -14,9 +14,11 @@ def get_world_size() -> int: return 1 -def print_rank_0(*args, **kwargs) -> None: +def save_eval_result_rank_0(s: str, save_path: str, **kwargs) -> None: if not dist.is_initialized() or dist.get_rank() == 0: - print(*args, **kwargs) + with open(save_path, "a+") as f: + train_config = "; ".join([str(kwargs[key]) for key in kwargs]) + f.write(train_config + "\n" + s + "\n") def divide(x: float, y: float) -> float: @@ -74,6 +76,8 @@ class PerformanceEvaluator(Callback): reward_model_num_params: int, enable_grad_checkpoint: bool = False, ignore_episodes: int = 0, + train_config: Optional[dict] = None, + save_path: Optional[str] = None, ) -> None: super().__init__() self.world_size = get_world_size() @@ -92,6 +96,8 @@ class PerformanceEvaluator(Callback): self.make_experience_flop: int = 0 self.learn_num_samples: int = 0 self.learn_flop: int = 0 + self.train_config = train_config + self.save_path = save_path def on_episode_start(self, episode: int) -> None: self.disable = self.ignore_episodes > 0 and episode < self.ignore_episodes @@ -172,12 +178,14 @@ class PerformanceEvaluator(Callback): make_experience_time_per_sample = divide(avg_make_experience_duration, num_effective_samples) learn_time_per_sample = divide(avg_learn_duration, num_effective_samples) - print_rank_0( + save_eval_result_rank_0( f"Performance summary:\n" + f"Generate {self.make_experience_num_samples * self.world_size} samples, throughput: {avg_make_experience_throughput:.2f} samples/s, TFLOPS per GPU: {avg_make_experience_tflops:.2f}\n" + f"Train {self.learn_num_samples * self.world_size} samples, throughput: {avg_learn_throughput:.2f} samples/s, TFLOPS per GPU: {avg_learn_tflops:.2f}\n" + f"Overall throughput: {avg_overall_throughput:.2f} samples/s\n" + f"Overall time per sample: {overall_time_per_sample:.2f} s\n" + f"Make experience time per sample: {make_experience_time_per_sample:.2f} s, {make_experience_time_per_sample/overall_time_per_sample*100:.2f}%\n" - + f"Learn time per sample: {learn_time_per_sample:.2f} s, {learn_time_per_sample/overall_time_per_sample*100:.2f}%" + + f"Learn time per sample: {learn_time_per_sample:.2f} s, {learn_time_per_sample/overall_time_per_sample*100:.2f}%", + self.save_path, + **self.train_config, ) diff --git a/applications/ColossalChat/coati/trainer/dpo.py b/applications/ColossalChat/coati/trainer/dpo.py new file mode 100755 index 000000000..cbe7d7ca8 --- /dev/null +++ b/applications/ColossalChat/coati/trainer/dpo.py @@ -0,0 +1,336 @@ +""" +Dpo trainer +""" + +from typing import Any, Optional + +import torch +from coati.models.loss import DpoLoss +from coati.models.utils import calc_masked_log_probs +from coati.trainer.utils import all_reduce_mean +from coati.utils import AccumulativeMeanMeter, save_checkpoint +from torch.optim import Optimizer +from torch.optim.lr_scheduler import _LRScheduler +from torch.utils.data import DataLoader +from tqdm import trange +from transformers import PreTrainedTokenizerBase + +from colossalai.booster import Booster +from colossalai.cluster import DistCoordinator +from colossalai.utils import get_current_device + +from .base import SLTrainer +from .utils import is_rank_0, to_device + + +class DPOTrainer(SLTrainer): + """ + Trainer for PPO algorithm. + + Args: + actor (Actor): the actor model in ppo algorithm + ref_model (Critic): the reference model in ppo algorithm + booster (Strategy): the strategy to use for training + actor_optim (Optimizer): the optimizer to use for actor model + actor_lr_scheduler (_LRScheduler): the lr scheduler to use for actor model + tokenizer (PreTrainedTokenizerBase): the tokenizer to use for encoding + max_epochs (int, defaults to 1): the max number of epochs to train + beta (float, defaults to 0.1): the beta parameter in dpo loss + accumulation_steps (int): the number of steps to accumulate gradients + start_epoch (int, defaults to 0): the start epoch, non-zero if resumed from a checkpoint + save_interval (int): the interval to save model checkpoints, default to 0, which means no checkpoint will be saved during trainning + save_dir (str): the directory to save checkpoints + coordinator (DistCoordinator): the coordinator to use for distributed logging + """ + + def __init__( + self, + actor: Any, + ref_model: Any, + booster: Booster, + actor_optim: Optimizer, + actor_lr_scheduler: _LRScheduler, + tokenizer: PreTrainedTokenizerBase, + max_epochs: int = 1, + beta: float = 0.1, + accumulation_steps: int = 1, + start_epoch: int = 0, + save_interval: int = 0, + save_dir: str = None, + coordinator: DistCoordinator = None, + ) -> None: + super().__init__(booster, max_epochs=max_epochs, model=actor, optimizer=actor_optim, start_epoch=start_epoch) + self.ref_model = ref_model + self.actor_scheduler = actor_lr_scheduler + self.tokenizer = tokenizer + self.actor_loss_fn = DpoLoss(beta) + self.save_interval = save_interval + self.coordinator = coordinator + self.save_dir = save_dir + self.num_train_step = 0 + self.accumulation_steps = accumulation_steps + self.device = get_current_device() + self.accumulative_meter = AccumulativeMeanMeter() + + def _before_fit( + self, + train_preference_dataloader: DataLoader = None, + eval_preference_dataloader: DataLoader = None, + log_dir: Optional[str] = None, + use_wandb: bool = False, + ): + """ + Args: + prompt_dataloader (DataLoader): the dataloader to use for prompt data + pretrain_dataloader (DataLoader): the dataloader to use for pretrain data + """ + self.train_dataloader = train_preference_dataloader + self.eval_dataloader = eval_preference_dataloader + self.writer = None + if use_wandb and is_rank_0(): + assert log_dir is not None, "log_dir must be provided when use_wandb is True" + import wandb + + self.wandb_run = wandb.init(project="Coati-dpo", sync_tensorboard=True) + if log_dir is not None and is_rank_0(): + import os + import time + + from torch.utils.tensorboard import SummaryWriter + + log_dir = os.path.join(log_dir, "dpo") + log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) + self.writer = SummaryWriter(log_dir=log_dir) + + def _train(self, epoch: int): + """ + Args: + epoch int: the number of current epoch + """ + self.model.train() + self.accumulative_meter.reset() + step_bar = trange( + len(self.train_dataloader) // self.accumulation_steps, + desc=f"Epoch {epoch + 1}/{self.max_epochs}", + disable=not is_rank_0(), + ) + for i, batch in enumerate(self.train_dataloader): + batch = to_device(batch, self.device) + ( + chosen_input_ids, + chosen_attention_mask, + chosen_loss_mask, + reject_input_ids, + reject_attention_mask, + reject_loss_mask, + ) = ( + batch["chosen_input_ids"], + batch["chosen_attention_mask"], + batch["chosen_loss_mask"], + batch["reject_input_ids"], + batch["reject_attention_mask"], + batch["reject_loss_mask"], + ) + reject_loss_mask[:, -1] = False + batch_size = chosen_input_ids.size()[0] + + actor_all_logits = self.model( + input_ids=torch.cat([chosen_input_ids, reject_input_ids]), + attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]), + )["logits"].to(torch.float32) + actor_chosen_logits = actor_all_logits[:batch_size] + actor_reject_logits = actor_all_logits[batch_size:] + logprob_actor_chosen = calc_masked_log_probs(actor_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:]) + + logprob_actor_reject = calc_masked_log_probs(actor_reject_logits, reject_input_ids, reject_loss_mask[:, 1:]) + + if self.ref_model is not None: + self.ref_model.eval() + with torch.no_grad(): + ref_all_logits = self.ref_model( + input_ids=torch.cat([chosen_input_ids, reject_input_ids]), + attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]), + )["logits"].to(torch.float32) + ref_chosen_logits = ref_all_logits[:batch_size] + ref_reject_logits = ref_all_logits[batch_size:] + logprob_ref_chosen = calc_masked_log_probs( + ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:] + ) + logprob_ref_reject = calc_masked_log_probs( + ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:] + ) + else: + logprob_ref_chosen = None + logprob_ref_reject = None + + losses, chosen_rewards, rejected_rewards = self.actor_loss_fn( + logprob_actor_chosen, + logprob_actor_reject, + logprob_ref_chosen if logprob_ref_chosen is not None else None, + logprob_ref_reject if logprob_ref_reject is not None else None, + chosen_loss_mask[:, 1:], + reject_loss_mask[:, 1:], + ) + reward_accuracies = (chosen_rewards > rejected_rewards).float().mean() + + # DPO Loss + loss = losses.mean() + + self.booster.backward(loss=loss, optimizer=self.optimizer) + if self.num_train_step % self.accumulation_steps == self.accumulation_steps - 1: + self.optimizer.step() + self.optimizer.zero_grad() + self.actor_scheduler.step() + + # sync + loss_mean = all_reduce_mean(tensor=loss) + chosen_rewards_mean = all_reduce_mean(tensor=chosen_rewards) + rejected_rewards_mean = all_reduce_mean(tensor=rejected_rewards) + reward_accuracies_mean = all_reduce_mean(tensor=reward_accuracies) + self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item()) + self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item()) + + if i % self.accumulation_steps == self.accumulation_steps - 1: + self.num_train_step += 1 + step_bar.update() + # logging + if self.writer and is_rank_0(): + self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step) + self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step) + self.writer.add_scalar( + "train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), self.num_train_step + ) + self.writer.add_scalar( + "train/rejected_rewards", + self.accumulative_meter.get("rejected_rewards"), + self.num_train_step, + ) + self.writer.add_scalar( + "train/margin", + self.accumulative_meter.get("chosen_rewards") - self.accumulative_meter.get("rejected_rewards"), + self.num_train_step, + ) + self.writer.add_scalar( + "train/accuracy", + self.accumulative_meter.get("accuracy"), + self.num_train_step, + ) + self.accumulative_meter.reset() + + if (self.num_train_step + 1) % self.save_interval == 0: + # save checkpoint + self.coordinator.print_on_master("\nStart saving model checkpoint with running states") + save_checkpoint( + save_dir=self.save_dir, + booster=self.booster, + model=self.model, + optimizer=self.optimizer, + lr_scheduler=self.actor_scheduler, + epoch=epoch, + step=i + 1, + batch_size=batch_size, + coordinator=self.coordinator, + ) + self.coordinator.print_on_master( + f"Saved checkpoint at epoch {epoch} step {self.save_interval} at folder {self.save_dir}" + ) + + step_bar.close() + + def _eval(self, epoch: int): + """ + Args: + epoch int: the number of current epoch + """ + if self.eval_dataloader is None: + self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation") + return + self.model.eval() + self.ref_model.eval() + self.coordinator.print_on_master("\nStart evaluation...") + + step_bar = trange( + len(self.eval_dataloader), + desc=f"Epoch {epoch + 1}/{self.max_epochs}", + disable=not is_rank_0(), + ) + + self.accumulative_meter.reset() + + with torch.no_grad(): + for i, batch in enumerate(self.eval_dataloader): + batch = to_device(batch, self.device) + ( + chosen_input_ids, + chosen_attention_mask, + chosen_loss_mask, + reject_input_ids, + reject_attention_mask, + reject_loss_mask, + ) = ( + batch["chosen_input_ids"], + batch["chosen_attention_mask"], + batch["chosen_loss_mask"], + batch["reject_input_ids"], + batch["reject_attention_mask"], + batch["reject_loss_mask"], + ) + + batch_size = chosen_input_ids.size()[0] + + actor_all_logits = self.model( + torch.cat([chosen_input_ids, reject_input_ids]), + torch.cat([chosen_attention_mask, reject_attention_mask]), + )["logits"].to(torch.float32) + actor_chosen_logits = actor_all_logits[:batch_size] + actor_reject_logits = actor_all_logits[batch_size:] + + logprob_actor_chosen = calc_masked_log_probs( + actor_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:] + ) + + logprob_actor_reject = calc_masked_log_probs( + actor_reject_logits, reject_input_ids, reject_loss_mask[:, 1:] + ) + + self.ref_model.eval() + + ref_all_logits = self.ref_model( + torch.cat([chosen_input_ids, reject_input_ids]), + torch.cat([chosen_attention_mask, reject_attention_mask]), + )["logits"].to(torch.float32) + ref_chosen_logits = ref_all_logits[:batch_size] + ref_reject_logits = ref_all_logits[batch_size:] + logprob_ref_chosen = calc_masked_log_probs(ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:]) + logprob_ref_reject = calc_masked_log_probs(ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:]) + + losses, chosen_rewards, rejected_rewards = self.actor_loss_fn( + logprob_actor_chosen, + logprob_actor_reject, + logprob_ref_chosen if logprob_ref_chosen is not None else None, + logprob_ref_reject if logprob_ref_reject is not None else None, + chosen_loss_mask[:, 1:], + reject_loss_mask[:, 1:], + ) + reward_accuracies = (chosen_rewards > rejected_rewards).float() + loss = losses.mean() + loss_mean = all_reduce_mean(tensor=loss) + chosen_rewards_mean = all_reduce_mean(tensor=chosen_rewards) + rejected_rewards_mean = all_reduce_mean(tensor=rejected_rewards) + reward_accuracies_mean = all_reduce_mean(tensor=reward_accuracies) + self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item()) + self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item()) + self.accumulative_meter.add( + "margin", (chosen_rewards_mean - rejected_rewards_mean).to(torch.float16).mean().item() + ) + step_bar.update() + + msg = "Evaluation Result:\n" + for tag in ["loss", "chosen_rewards", "rejected_rewards", "accuracy", "margin"]: + msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n" + self.coordinator.print_on_master(msg) + step_bar.close() diff --git a/applications/ColossalChat/coati/trainer/ppo.py b/applications/ColossalChat/coati/trainer/ppo.py new file mode 100755 index 000000000..287767669 --- /dev/null +++ b/applications/ColossalChat/coati/trainer/ppo.py @@ -0,0 +1,403 @@ +""" +PPO trainer +""" + +import os +from typing import Dict, List, Optional + +import torch +import wandb +from coati.experience_buffer import NaiveExperienceBuffer +from coati.experience_maker import Experience, NaiveExperienceMaker +from coati.models import Critic, RewardModel +from coati.models.loss import GPTLMLoss, PolicyLoss, ValueLoss +from coati.models.utils import calc_action_log_probs +from coati.trainer.callbacks import Callback +from coati.trainer.utils import all_reduce_mean +from coati.utils import AccumulativeMeanMeter, save_checkpoint +from torch.optim import Optimizer +from torch.optim.lr_scheduler import _LRScheduler +from torch.utils.data import DataLoader, DistributedSampler +from tqdm import tqdm +from transformers import PreTrainedModel, PreTrainedTokenizerBase + +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin +from colossalai.cluster import DistCoordinator +from colossalai.utils import get_current_device + +from .base import OLTrainer +from .utils import CycledDataLoader, is_rank_0, to_device + + +def _set_default_generate_kwargs(actor: PreTrainedModel) -> Dict: + """ + Set default keyword arguments for generation based on the actor model. + + Args: + actor (PreTrainedModel): The actor model. + + Returns: + Dict: A dictionary containing the default keyword arguments for generation. + """ + unwrapped_model = actor.unwrap() + new_kwargs = {} + # use huggingface models method directly + if hasattr(unwrapped_model, "prepare_inputs_for_generation"): + new_kwargs["prepare_inputs_fn"] = unwrapped_model.prepare_inputs_for_generation + + if hasattr(unwrapped_model, "_update_model_kwargs_for_generation"): + new_kwargs["update_model_kwargs_fn"] = unwrapped_model._update_model_kwargs_for_generation + return new_kwargs + + +class PPOTrainer(OLTrainer): + """ + Trainer for PPO algorithm. + + Args: + strategy (Booster): the strategy to use for training + actor (Actor): the actor model in ppo algorithm + critic (Critic): the critic model in ppo algorithm + reward_model (RewardModel): the reward model in rlhf algorithm to make reward of sentences + initial_model (Actor): the initial model in rlhf algorithm to generate reference logics to limit the update of actor + actor_optim (Optimizer): the optimizer to use for actor model + critic_optim (Optimizer): the optimizer to use for critic model + kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss + train_batch_size (int, defaults to 8): the batch size to use for training + buffer_limit (int, defaults to 0): the max_size limitation of buffer + buffer_cpu_offload (bool, defaults to True): whether to offload buffer to cpu + eps_clip (float, defaults to 0.2): the clip coefficient of policy loss + vf_coef (float, defaults to 1.0): the coefficient of value loss + ptx_coef (float, defaults to 0.9): the coefficient of ptx loss + value_clip (float, defaults to 0.4): the clip coefficient of value loss + sample_buffer (bool, defaults to False): whether to sample from buffer + dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader + offload_inference_models (bool, defaults to True): whether to offload inference models to cpu during training process + callbacks (List[Callback], defaults to []): the callbacks to call during training process + generate_kwargs (dict, optional): the kwargs to use while model generating + """ + + def __init__( + self, + actor_booster: Booster, + critic_booster: Booster, + actor: PreTrainedModel, + critic: Critic, + reward_model: RewardModel, + initial_model: PreTrainedModel, + actor_optim: Optimizer, + critic_optim: Optimizer, + actor_lr_scheduler: _LRScheduler, + critic_lr_scheduler: _LRScheduler, + tokenizer: PreTrainedTokenizerBase, + kl_coef: float = 0.1, + ptx_coef: float = 0.9, + train_batch_size: int = 8, + buffer_limit: int = 0, + buffer_cpu_offload: bool = True, + eps_clip: float = 0.2, + vf_coef: float = 1.0, + value_clip: float = 0.2, + sample_buffer: bool = False, + dataloader_pin_memory: bool = True, + offload_inference_models: bool = True, + accumulation_steps: int = 1, + save_interval: int = 0, + save_dir: str = None, + use_tp: bool = False, + coordinator: DistCoordinator = None, + callbacks: List[Callback] = [], + **generate_kwargs, + ) -> None: + if isinstance(actor_booster, GeminiPlugin): + assert not offload_inference_models, "GeminiPlugin is not compatible with manual model.to('cpu')" + + data_buffer = NaiveExperienceBuffer(train_batch_size, buffer_limit, buffer_cpu_offload) + super().__init__( + actor_booster, critic_booster, data_buffer, sample_buffer, dataloader_pin_memory, callbacks=callbacks + ) + self.generate_kwargs = _set_default_generate_kwargs(actor) + self.generate_kwargs.update(generate_kwargs) + + self.actor = actor + self.critic = critic + self.actor_booster = actor_booster + self.critic_booster = critic_booster + self.actor_scheduler = actor_lr_scheduler + self.critic_scheduler = critic_lr_scheduler + self.tokenizer = tokenizer + self.experience_maker = NaiveExperienceMaker( + self.actor, self.critic, reward_model, initial_model, self.tokenizer, kl_coef + ) + self.train_batch_size = train_batch_size + + self.actor_loss_fn = PolicyLoss(eps_clip) + self.critic_loss_fn = ValueLoss(value_clip) + self.vf_coef = vf_coef + self.ptx_loss_fn = GPTLMLoss() + self.ptx_coef = ptx_coef + self.actor_optim = actor_optim + self.critic_optim = critic_optim + self.save_interval = save_interval + self.coordinator = coordinator + self.actor_save_dir = os.path.join(save_dir, "actor") + self.critic_save_dir = os.path.join(save_dir, "critic") + self.num_train_step = 0 + self.accumulation_steps = accumulation_steps + self.use_tp = use_tp + self.accumulative_meter = AccumulativeMeanMeter() + self.offload_inference_models = offload_inference_models + self.device = get_current_device() + + def _before_fit( + self, + prompt_dataloader: DataLoader, + pretrain_dataloader: Optional[DataLoader] = None, + log_dir: Optional[str] = None, + use_wandb: bool = False, + ): + """ + Args: + prompt_dataloader (DataLoader): the dataloader to use for prompt data + pretrain_dataloader (DataLoader): the dataloader to use for pretrain data + """ + self.prompt_dataloader = CycledDataLoader(prompt_dataloader) + self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader) if pretrain_dataloader is not None else None + + self.writer = None + if use_wandb and is_rank_0(): + assert log_dir is not None, "log_dir must be provided when use_wandb is True" + import wandb + + self.wandb_run = wandb.init(project="Coati-ppo", sync_tensorboard=True) + if log_dir is not None and is_rank_0(): + import os + import time + + from torch.utils.tensorboard import SummaryWriter + + log_dir = os.path.join(log_dir, "ppo") + log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) + self.writer = SummaryWriter(log_dir=log_dir) + + def _setup_update_phrase_dataload(self): + """ + why not use distributed_dataloader? + if tp is used, input on each rank is the same and we use the same dataloader to feed same experience to all ranks + if tp is not used, input on each rank is different and we expect different experiences to be fed to each rank + """ + self.dataloader = DataLoader( + self.data_buffer, + batch_size=self.train_batch_size, + shuffle=True, + drop_last=True, + pin_memory=self.dataloader_pin_memory, + collate_fn=self.data_buffer.collate_fn, + ) + + def _make_experience(self, collect_step: int) -> Experience: + """ + Make experience + """ + prompts = self.prompt_dataloader.next() + if self.offload_inference_models: + # TODO(ver217): this may be controlled by strategy if they are prepared by strategy + self.experience_maker.initial_model.to(self.device) + self.experience_maker.reward_model.to(self.device) + return self.experience_maker.make_experience( + input_ids=prompts["input_ids"].to(get_current_device()), + attention_mask=prompts["attention_mask"].to(get_current_device()), + **self.generate_kwargs, + ) + + def _training_step(self, experience: Experience): + """ + Args: + experience: + sequences: [batch_size, prompt_length + response_length] --- ............ + """ + self.num_train_step += 1 + self.actor.train() + self.critic.train() + num_actions = experience.action_log_probs.size(1) + # policy loss + + actor_logits = self.actor(input_ids=experience.sequences, attention_mask=experience.attention_mask)[ + "logits" + ] # [batch size, prompt_length + response_length] + action_log_probs = calc_action_log_probs(actor_logits, experience.sequences, num_actions) + + actor_loss, to_skip, max_ratio = self.actor_loss_fn( + action_log_probs, experience.action_log_probs, experience.advantages, action_mask=experience.action_mask + ) + actor_loss = (1 - self.ptx_coef) * actor_loss + if not to_skip: + self.actor_booster.backward(loss=actor_loss, optimizer=self.actor_optim) + + # ptx loss + if self.ptx_coef != 0: + batch = self.pretrain_dataloader.next() + batch = to_device(batch, self.device) + outputs = self.actor(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]) + ptx_loss = outputs.loss + ptx_loss = self.ptx_coef * ptx_loss + self.actor_booster.backward(loss=ptx_loss, optimizer=self.actor_optim) + + # value loss + values = self.critic( + input_ids=experience.sequences, attention_mask=experience.attention_mask + ) # [batch size, prompt_length + response_length] + critic_loss = self.critic_loss_fn( + values[:, -num_actions:], experience.values, experience.advantages, action_mask=experience.action_mask + ) + critic_loss = critic_loss * self.vf_coef + self.critic_booster.backward(loss=critic_loss, optimizer=self.critic_optim) + + # sync + actor_loss_mean = all_reduce_mean(tensor=actor_loss) + critic_loss_mean = all_reduce_mean(tensor=critic_loss) + max_ratio_mean = all_reduce_mean(tensor=max_ratio) + reward_mean = all_reduce_mean(tensor=experience.reward.mean()) + value_mean = all_reduce_mean(tensor=experience.values.mean()) + advantages_mean = all_reduce_mean(tensor=experience.advantages.mean()) + kl_mean = all_reduce_mean(tensor=experience.kl.mean()) + if self.ptx_coef != 0: + ptx_loss_mean = all_reduce_mean(tensor=ptx_loss) + + self.accumulative_meter.add("actor_loss", actor_loss_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("critic_loss", critic_loss_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("max_ratio", max_ratio_mean.to(torch.float16).item()) + self.accumulative_meter.add("reward", reward_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("value", value_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("advantages", advantages_mean.to(torch.float16).item()) + self.accumulative_meter.add("skip_ratio", 1.0 if to_skip else 0.0) + self.accumulative_meter.add("kl", kl_mean.to(torch.float16).item()) + if self.ptx_coef != 0: + self.accumulative_meter.add("ptx_loss", ptx_loss_mean.to(torch.float16).mean().item()) + + if self.num_train_step % self.accumulation_steps == self.accumulation_steps - 1: + self.actor_optim.step() + self.critic_optim.step() + self.actor_optim.zero_grad() + self.critic_optim.zero_grad() + self.actor_scheduler.step() + self.critic_scheduler.step() + + # preparing logging model output and corresponding rewards. + if self.num_train_step % 10 == 1: + response_text = self.experience_maker.tokenizer.batch_decode( + experience.sequences, skip_special_tokens=True + ) + for i in range(len(response_text)): + response_text[i] = response_text[i] + f"\n\nReward: {experience.reward[i]}" + + if self.writer and is_rank_0() and "wandb_run" in self.__dict__: + # log output to wandb + my_table = wandb.Table( + columns=[f"sample response {i}" for i in range(len(response_text))], data=[response_text] + ) + try: + self.wandb_run.log({"sample_response": my_table}) + except OSError as e: + self.coordinator.print_on_master(e) + elif self.writer and is_rank_0(): + for line in response_text: + self.coordinator.print_on_master(line) + + if self.writer and is_rank_0(): + self.writer.add_scalar("train/max_ratio", self.accumulative_meter.get("max_ratio"), self.num_train_step) + self.writer.add_scalar( + "train/skip_ratio", self.accumulative_meter.get("skip_ratio"), self.num_train_step + ) + self.writer.add_scalar( + "train/actor_loss", self.accumulative_meter.get("actor_loss"), self.num_train_step + ) + self.writer.add_scalar("train/lr_actor", self.actor_optim.param_groups[0]["lr"], self.num_train_step) + self.writer.add_scalar("train/lr_critic", self.critic_optim.param_groups[0]["lr"], self.num_train_step) + self.writer.add_scalar( + "train/critic_loss", self.accumulative_meter.get("critic_loss"), self.num_train_step + ) + if self.ptx_coef != 0: + self.writer.add_scalar( + "train/ptx_loss", self.accumulative_meter.get("ptx_loss"), self.num_train_step + ) + self.writer.add_scalar("reward", self.accumulative_meter.get("reward"), self.num_train_step) + self.writer.add_scalar("approx_kl", self.accumulative_meter.get("kl"), self.num_train_step) + self.writer.add_scalar("value", self.accumulative_meter.get("value"), self.num_train_step) + self.writer.add_scalar("advantages", self.accumulative_meter.get("advantages"), self.num_train_step) + self.accumulative_meter.reset() + + def _learn(self, update_step: int): + """ + Perform the learning step of the PPO algorithm. + + Args: + update_step (int): The current update step. + + Returns: + None + """ + if self.offload_inference_models: + self.experience_maker.initial_model.to("cpu") + self.experience_maker.reward_model.to("cpu") + + # buffer may be empty at first, we should rebuild at each training + if self.sample_buffer: + experience = self.data_buffer.sample() + self._on_learn_batch_start() + experience.to_device(self.device) + self._training_step(experience) + self._on_learn_batch_end(experience) + else: + if isinstance(self.dataloader.sampler, DistributedSampler): + self.dataloader.sampler.set_epoch(update_step) + pbar = tqdm(self.dataloader, desc=f"Train epoch [{update_step + 1}]", disable=not is_rank_0()) + for experience in pbar: + self._on_learn_batch_start() + experience.to_device(self.device) + self._training_step(experience) + self._on_learn_batch_end(experience) + + def _save_checkpoint(self, episode: int = 0): + """ + Save the actor and critic checkpoints with running states. + + Args: + episode (int): The current episode number. + + Returns: + None + """ + + self.coordinator.print_on_master("\nStart saving actor checkpoint with running states") + save_checkpoint( + save_dir=self.actor_save_dir, + booster=self.actor_booster, + model=self.actor, + optimizer=self.actor_optim, + lr_scheduler=self.actor_scheduler, + epoch=0, + step=episode + 1, + batch_size=self.train_batch_size, + coordinator=self.coordinator, + ) + self.coordinator.print_on_master( + f"Saved actor checkpoint at episode {(episode + 1)} at folder {self.actor_save_dir}" + ) + + self.coordinator.print_on_master("\nStart saving critic checkpoint with running states") + save_checkpoint( + save_dir=self.critic_save_dir, + booster=self.critic_booster, + model=self.critic, + optimizer=self.critic_optim, + lr_scheduler=self.critic_scheduler, + epoch=0, + step=episode + 1, + batch_size=self.train_batch_size, + coordinator=self.coordinator, + ) + self.coordinator.print_on_master( + f"Saved critic checkpoint at episode {(episode + 1)} at folder {self.critic_save_dir}" + ) diff --git a/applications/ColossalChat/coati/trainer/rm.py b/applications/ColossalChat/coati/trainer/rm.py new file mode 100755 index 000000000..0fb714a62 --- /dev/null +++ b/applications/ColossalChat/coati/trainer/rm.py @@ -0,0 +1,242 @@ +""" +Reward model trianer +""" + +import os +from typing import Any, Callable, Optional + +import torch +import tqdm +from coati.models import LogSigLoss +from coati.trainer.utils import all_reduce_mean +from coati.utils import AccumulativeMeanMeter, save_checkpoint +from torch.optim import Optimizer +from torch.optim.lr_scheduler import _LRScheduler +from torch.utils.data import DataLoader +from transformers import PreTrainedTokenizerBase + +from colossalai.booster import Booster +from colossalai.cluster import DistCoordinator +from colossalai.utils import get_current_device + +from .base import SLTrainer +from .utils import is_rank_0, to_device + + +class RewardModelTrainer(SLTrainer): + """ + Trainer for PPO algorithm. + + Args: + actor (Actor): the actor model in ppo algorithm + ref_model (Critic): the reference model in ppo algorithm + booster (Strategy): the strategy to use for training + actor_optim (Optimizer): the optimizer to use for actor model + actor_lr_scheduler (_LRScheduler): the lr scheduler to use for actor model + tokenizer (PreTrainedTokenizerBase): the tokenizer to use for encoding + max_epochs (int, defaults to 1): the max number of epochs to train + beta (float, defaults to 0.1): the beta parameter in dpo loss + accumulation_steps (int): the number of steps to accumulate gradients + start_epoch (int, defaults to 0): the start epoch, non-zero if resumed from a checkpoint + save_interval (int): the interval to save model checkpoints, default to 0, which means no checkpoint will be saved during trainning + save_dir (str): the directory to save checkpoints + coordinator (DistCoordinator): the coordinator to use for distributed logging + """ + + def __init__( + self, + model: Any, + booster: Booster, + optimizer: Optimizer, + lr_scheduler: _LRScheduler, + tokenizer: PreTrainedTokenizerBase, + loss_fn: Optional[Callable] = None, + max_epochs: int = 1, + beta: float = 0.1, + accumulation_steps: int = 1, + start_epoch: int = 0, + save_interval: int = 0, + save_dir: str = None, + coordinator: DistCoordinator = None, + ) -> None: + super().__init__(booster, max_epochs=max_epochs, model=model, optimizer=optimizer, start_epoch=start_epoch) + self.actor_scheduler = lr_scheduler + self.tokenizer = tokenizer + self.loss_fn = loss_fn if loss_fn is not None else LogSigLoss(beta=beta) + self.save_interval = save_interval + self.coordinator = coordinator + self.save_dir = save_dir + self.num_train_step = 0 + self.accumulation_steps = accumulation_steps + self.device = get_current_device() + self.accumulative_meter = AccumulativeMeanMeter() + + def _before_fit( + self, + train_preference_dataloader: DataLoader = None, + eval_preference_dataloader: DataLoader = None, + log_dir: Optional[str] = None, + use_wandb: bool = False, + ): + """ + Args: + prompt_dataloader (DataLoader): the dataloader to use for prompt data + pretrain_dataloader (DataLoader): the dataloader to use for pretrain data + """ + self.train_dataloader = train_preference_dataloader + self.eval_dataloader = eval_preference_dataloader + self.writer = None + if use_wandb and is_rank_0(): + assert log_dir is not None, "log_dir must be provided when use_wandb is True" + import wandb + + self.wandb_run = wandb.init(project="Coati-rm", sync_tensorboard=True) + if log_dir is not None and is_rank_0(): + import os + import time + + from torch.utils.tensorboard import SummaryWriter + + log_dir = os.path.join(log_dir, "rm") + log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) + self.writer = SummaryWriter(log_dir=log_dir) + + def _train(self, epoch): + self.model.train() + step_bar = tqdm.trange( + len(self.train_dataloader) // self.accumulation_steps, + desc=f"Epoch {epoch + 1}/{self.max_epochs}", + disable=not is_rank_0(), + ) + for i, batch in enumerate(self.train_dataloader): + batch = to_device(batch, self.device) + + ( + chosen_input_ids, + chosen_attention_mask, + reject_input_ids, + reject_attention_mask, + ) = ( + batch["chosen_input_ids"], + batch["chosen_attention_mask"], + batch["reject_input_ids"], + batch["reject_attention_mask"], + ) + batch_size = chosen_input_ids.size()[0] + + # Concatenate for better parrallelism + reward = self.model( + torch.cat([chosen_input_ids, reject_input_ids], dim=0), + attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask], dim=0), + ) + chosen_reward = reward[:batch_size] + reject_reward = reward[batch_size:] + loss = self.loss_fn(chosen_reward, reject_reward).mean() + + self.booster.backward(loss=loss, optimizer=self.optimizer) + + accuracy = (chosen_reward > reject_reward).float() + + # Sync + loss_mean = all_reduce_mean(tensor=loss) + chosen_rewards_mean = all_reduce_mean(tensor=chosen_reward) + rejected_rewards_mean = all_reduce_mean(tensor=reject_reward) + accuracy_mean = all_reduce_mean(tensor=accuracy) + self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item()) + self.accumulative_meter.add("accuracy", accuracy_mean.mean().to(torch.float16).item()) + + if (i + 1) % self.accumulation_steps == 0: + self.optimizer.step() + self.optimizer.zero_grad() + self.actor_scheduler.step() + step_bar.update() + self.num_train_step += 1 + + # Logging + if self.writer and is_rank_0(): + self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step) + self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step) + self.writer.add_scalar( + "train/dist", + self.accumulative_meter.get("chosen_rewards") - self.accumulative_meter.get("rejected_rewards"), + self.num_train_step, + ) + self.writer.add_scalar( + "train/reward_chosen", self.accumulative_meter.get("chosen_rewards"), self.num_train_step + ) + self.writer.add_scalar( + "train/reward_reject", self.accumulative_meter.get("rejected_rewards"), self.num_train_step + ) + self.writer.add_scalar("train/acc", self.accumulative_meter.get("accuracy"), self.num_train_step) + + self.accumulative_meter.reset() + + # Save checkpoint + if self.save_interval > 0 and (self.num_train_step + 1) % self.save_interval == 0: + self.coordinator.print_on_master("\nStart saving model checkpoint with running states") + save_checkpoint( + save_dir=self.save_dir, + booster=self.booster, + model=self.model, + optimizer=self.optimizer, + lr_scheduler=self.actor_scheduler, + epoch=epoch, + step=i + 1, + batch_size=batch_size, + coordinator=self.coordinator, + ) + self.coordinator.print_on_master( + f"Saved checkpoint at epoch {epoch} step {(i + 1)/self.accumulation_steps} at folder {self.save_dir}" + ) + step_bar.close() + + def _eval(self, epoch): + if self.eval_dataloader is None: + self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation") + return + self.model.eval() + step_bar = tqdm.trange( + len(self.eval_dataloader), desc=f"Epoch {epoch + 1}/{self.max_epochs}", disable=not is_rank_0() + ) + with torch.no_grad(): + for i, batch in enumerate(self.eval_dataloader): + batch = to_device(batch, self.device) + ( + chosen_input_ids, + chosen_attention_mask, + reject_input_ids, + reject_attention_mask, + ) = ( + batch["chosen_input_ids"], + batch["chosen_attention_mask"], + batch["reject_input_ids"], + batch["reject_attention_mask"], + ) + + chosen_reward = self.model(chosen_input_ids, attention_mask=chosen_attention_mask) + reject_reward = self.model(reject_input_ids, attention_mask=reject_attention_mask) + loss = self.loss_fn(chosen_reward, reject_reward).mean() + + # Sync + loss_mean = all_reduce_mean(tensor=loss) + chosen_rewards_mean = all_reduce_mean(tensor=chosen_reward) + rejected_rewards_mean = all_reduce_mean(tensor=reject_reward) + self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item()) + self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item()) + + step_bar.update() + + msg = "Evaluation Result:\n" + for tag in ["loss", "chosen_rewards", "rejected_rewards"]: + msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n" + msg = ( + msg + + f"distance: {self.accumulative_meter.get('chosen_rewards')-self.accumulative_meter.get('rejected_rewards')}\n" + ) + self.coordinator.print_on_master(msg) + with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f: + f.write(msg) + step_bar.close() diff --git a/applications/ColossalChat/coati/trainer/sft.py b/applications/ColossalChat/coati/trainer/sft.py new file mode 100755 index 000000000..c95f5b65a --- /dev/null +++ b/applications/ColossalChat/coati/trainer/sft.py @@ -0,0 +1,170 @@ +""" +SFT trainer +""" + +import os +from typing import Optional + +import torch +from coati.trainer.utils import all_reduce_mean +from coati.utils import AccumulativeMeanMeter, save_checkpoint +from torch.optim import Optimizer +from torch.optim.lr_scheduler import _LRScheduler +from torch.utils.data import DataLoader +from tqdm import trange + +from colossalai.booster import Booster +from colossalai.cluster import DistCoordinator + +from .base import SLTrainer +from .utils import is_rank_0, to_device + + +class SFTTrainer(SLTrainer): + """ + Trainer to use while training reward model. + + Args: + model (torch.nn.Module): the model to train + strategy (Strategy): the strategy to use for training + optim(Optimizer): the optimizer to use for training + lr_scheduler(_LRScheduler): the lr scheduler to use for training + max_epochs (int, defaults to 2): the number of epochs to train + accumulation_steps (int, defaults to 8): the number of steps to accumulate gradients + """ + + def __init__( + self, + model, + booster: Booster, + optim: Optimizer, + lr_scheduler: _LRScheduler, + max_epochs: int = 2, + accumulation_steps: int = 8, + start_epoch=0, + save_interval: int = None, + save_dir: str = None, + coordinator: Optional[DistCoordinator] = None, + ) -> None: + super().__init__(booster, max_epochs, model, optim, start_epoch=start_epoch) + + self.accumulation_steps = accumulation_steps + self.scheduler = lr_scheduler + self.save_interval = save_interval + self.save_dir = save_dir + self.coordinator = coordinator + self.num_train_step = 0 + self.num_eval_step = 0 + self.accumulative_meter = AccumulativeMeanMeter() + + def _before_fit( + self, + train_dataloader: DataLoader, + eval_dataloader: Optional[DataLoader] = None, + log_dir: Optional[str] = None, + use_wandb: bool = False, + ): + """ + Args: + train_dataloader: the dataloader to use for training + eval_dataloader: the dataloader to use for evaluation + log_dir: the directory to save logs + use_wandb: whether to use wandb for logging + """ + self.train_dataloader = train_dataloader + self.eval_dataloader = eval_dataloader + + self.writer = None + if use_wandb and is_rank_0(): + assert log_dir is not None, "log_dir must be provided when use_wandb is True" + import wandb + + wandb.init(project="Coati-sft", sync_tensorboard=True) + if log_dir is not None and is_rank_0(): + import os + import time + + from torch.utils.tensorboard import SummaryWriter + + log_dir = os.path.join(log_dir, "sft") + log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) + self.writer = SummaryWriter(log_dir=log_dir) + + def _train(self, epoch: int): + self.model.train() + step_bar = trange( + len(self.train_dataloader) // self.accumulation_steps, + desc=f"Epoch {epoch + 1}/{self.max_epochs}", + disable=not is_rank_0(), + ) + for i, batch in enumerate(self.train_dataloader): + batch = to_device(batch, torch.cuda.current_device()) + batch_size = batch["input_ids"].size(0) + outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]) + loss = outputs.loss + self.booster.backward(loss=loss, optimizer=self.optimizer) + + loss_mean = all_reduce_mean(tensor=loss) + self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item()) + + # Gradient accumulation + if (i + 1) % self.accumulation_steps == 0: + self.optimizer.step() + self.optimizer.zero_grad() + self.scheduler.step() + + if self.writer: + self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step) + self.writer.add_scalar("train/lr", self.scheduler.get_last_lr()[0], self.num_train_step) + self.num_train_step += 1 + self.accumulative_meter.reset() + step_bar.update() + + # Save checkpoint + if ( + self.save_dir is not None + and self.save_interval is not None + and (self.num_train_step + 1) % self.save_interval == 0 + ): + save_checkpoint( + save_dir=self.save_dir, + booster=self.booster, + model=self.model, + optimizer=self.optimizer, + lr_scheduler=self.scheduler, + epoch=epoch, + step=self.num_train_step + 1, + batch_size=batch_size, + coordinator=self.coordinator, + ) + self.coordinator.print_on_master( + f"Saved checkpoint at epoch {epoch} step {self.num_train_step} at folder {self.save_dir}" + ) + step_bar.close() + + def _eval(self, epoch: int): + if self.eval_dataloader is None: + self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation") + return + self.accumulative_meter.reset() + self.model.eval() + with torch.no_grad(): + step_bar = trange( + len(self.eval_dataloader), + desc=f"Epoch {epoch + 1}/{self.max_epochs}", + disable=not is_rank_0(), + ) + for batch in self.eval_dataloader: + batch = to_device(batch, torch.cuda.current_device()) + outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]) + loss_mean = all_reduce_mean(tensor=outputs.loss) + self.accumulative_meter.add("loss", loss_mean.item(), count_update=batch["input_ids"].size(0)) + step_bar.update() + loss_mean = self.accumulative_meter.get("loss") + msg = "Evaluation Result:\n" + for tag in ["loss"]: + msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n" + self.coordinator.print_on_master(msg) + with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f: + f.write(msg) + step_bar.close() diff --git a/applications/ColossalChat/coati/trainer/utils.py b/applications/ColossalChat/coati/trainer/utils.py new file mode 100755 index 000000000..5ce1e9ef0 --- /dev/null +++ b/applications/ColossalChat/coati/trainer/utils.py @@ -0,0 +1,113 @@ +""" +Training utilities for Coati. +""" +from typing import Any + +import torch +import torch.distributed as dist +from torch.utils._pytree import tree_map +from torch.utils.data import DataLoader + + +class CycledDataLoader: + """ + A data loader that cycles through the data when it reaches the end. + + Args: + dataloader (DataLoader): The original data loader. + + Attributes: + dataloader (DataLoader): The original data loader. + count (int): The number of times the data loader has been cycled. + dataloader_iter (iterable): The iterator for the data loader. + + Methods: + next(): Returns the next batch of data from the data loader, cycling through the data if necessary. + """ + + def __init__( + self, + dataloader: DataLoader, + ) -> None: + self.dataloader = dataloader + + self.count = 0 + self.dataloader_iter = None + + def next(self): + """ + Returns the next batch of data from the data loader, cycling through the data if necessary. + + Returns: + Any: The next batch of data from the data loader. + """ + # defer initialization + if self.dataloader_iter is None: + self.dataloader_iter = iter(self.dataloader) + + self.count += 1 + try: + return next(self.dataloader_iter) + except StopIteration: + self.count = 0 + self.dataloader_iter = iter(self.dataloader) + return next(self.dataloader_iter) + + +def is_rank_0() -> bool: + """ + Check if the current process is the rank 0 process in a distributed training setup. + + Returns: + bool: True if the current process is the rank 0 process, False otherwise. + """ + return not dist.is_initialized() or dist.get_rank() == 0 + + +def to_device(x: Any, device: torch.device) -> Any: + """ + Move the input tensor or nested structure of tensors to the specified device. + + Args: + x (Any): The input tensor or nested structure of tensors. + device (torch.device): The target device to move the tensors to. + + Returns: + Any: The tensor or nested structure of tensors moved to the target device. + """ + + def _to(t: Any): + if isinstance(t, torch.Tensor): + return t.to(device) + return t + + return tree_map(_to, x) + + +def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor: + """ + Perform all-reduce operation on the given tensor and compute the mean across all processes. + + Args: + tensor (torch.Tensor): The input tensor to be reduced. + + Returns: + torch.Tensor: The reduced tensor with mean computed across all processes. + """ + dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM) + tensor.div_(dist.get_world_size()) + return tensor + + +def all_reduce_sum(tensor: torch.Tensor) -> torch.Tensor: + """ + Performs an all-reduce operation to sum the values of the given tensor across all processes. + + Args: + tensor (torch.Tensor): The input tensor to be reduced. + + Returns: + torch.Tensor: The reduced tensor with the sum of values across all processes. + """ + dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM) + return tensor diff --git a/applications/ColossalChat/coati/utils/__init__.py b/applications/ColossalChat/coati/utils/__init__.py new file mode 100755 index 000000000..5d651b202 --- /dev/null +++ b/applications/ColossalChat/coati/utils/__init__.py @@ -0,0 +1,4 @@ +from .accumulative_meter import AccumulativeMeanMeter +from .ckpt_io import load_checkpoint, save_checkpoint + +__all__ = ["load_checkpoint", "save_checkpoint", "AccumulativeMeanMeter"] diff --git a/applications/ColossalChat/coati/utils/accumulative_meter.py b/applications/ColossalChat/coati/utils/accumulative_meter.py new file mode 100755 index 000000000..9ed662d2d --- /dev/null +++ b/applications/ColossalChat/coati/utils/accumulative_meter.py @@ -0,0 +1,69 @@ +""" +A class that can be used to calculate the mean of a variable +""" + + +class AccumulativeMeanVariable: + """ + A class that calculates the accumulative mean of a variable. + """ + + def __init__(self): + self._sum = 0 + self._count = 0 + + def add(self, value, count_update=1): + """ + Adds a value to the sum and updates the count. + + Args: + value (float): The value to be added. + count_update (int, optional): The amount to update the count by. Defaults to 1. + """ + self._sum += value + self._count += count_update + + def get(self): + """ + Calculates and returns the accumulative mean. + + Returns: + float: The accumulative mean. + """ + return self._sum / self._count if self._count > 0 else 0 + + def reset(self): + """ + Resets the sum and count to zero. + """ + self._sum = 0 + self._count = 0 + + +class AccumulativeMeanMeter: + """ + A class for calculating and storing the accumulative mean of variables. + + Attributes: + variable_dict (dict): A dictionary to store the accumulative mean variables. + + Methods: + add(name, value, count_update=1): Adds a value to the specified variable. + get(name): Retrieves the accumulative mean value of the specified variable. + reset(): Resets all the accumulative mean variables to their initial state. + """ + + def __init__(self): + self.variable_dict = {} + + def add(self, name, value, count_update=1): + if name not in self.variable_dict: + self.variable_dict[name] = AccumulativeMeanVariable() + self.variable_dict[name].add(value, count_update=count_update) + + def get(self, name): + return self.variable_dict[name].get() + + def reset(self): + for name in self.variable_dict: + self.variable_dict[name].reset() diff --git a/applications/ColossalChat/coati/utils/ckpt_io.py b/applications/ColossalChat/coati/utils/ckpt_io.py new file mode 100755 index 000000000..5b804f0ac --- /dev/null +++ b/applications/ColossalChat/coati/utils/ckpt_io.py @@ -0,0 +1,93 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +""" +Helper functions for IO save load checkpoints +""" + +import json +import os +from typing import Any, Dict, Tuple, Union + +import torch +from torch.optim.lr_scheduler import _LRScheduler +from torch.optim.optimizer import Optimizer + +from colossalai.booster import Booster +from colossalai.cluster import DistCoordinator + + +def load_json(file_path: Union[str, os.PathLike]) -> Dict[str, Any]: + """ + Load file in JSON format + """ + with open(file=file_path, mode="r", encoding="utf-8") as fp: + return json.load(fp) + + +def save_json(data: Dict[str, Any], file_path: Union[str, os.PathLike]) -> None: + """ + Save as JSON format + """ + with open(file=file_path, mode="w", encoding="utf-8") as fp: + json.dump(data, fp=fp, ensure_ascii=False, indent=4) + + +def save_checkpoint( + save_dir: Union[str, os.PathLike], + booster: Booster, + model: torch.nn.Module, + optimizer: Optimizer, + lr_scheduler: _LRScheduler, + epoch: int, + step: int, + batch_size: int, + coordinator: DistCoordinator, +) -> None: + """ + Save model checkpoint, optimizer, LR scheduler and intermedidate running states. + """ + + save_dir = os.path.join(save_dir, f"epoch-{epoch}_step-{step}") + os.makedirs(os.path.join(save_dir, "modeling"), exist_ok=True) + + booster.save_model(model, os.path.join(save_dir, "modeling"), shard=True) + + """ + Temporary disable the following as save_optimizer causes all processes to hang in a multi-gpu environment, + working on fixing this bug + """ + + booster.save_optimizer(optimizer, os.path.join(save_dir, "optimizer"), shard=True) + booster.save_lr_scheduler(lr_scheduler, os.path.join(save_dir, "lr_scheduler")) + running_states = { + "epoch": epoch, + "step": step, + "sample_start_index": step * batch_size, + } + if coordinator.is_master(): + save_json(running_states, os.path.join(save_dir, "running_states.json")) + + +def load_checkpoint( + load_dir: Union[str, os.PathLike], + booster: Booster, + model: torch.nn.Module, + optimizer: Optimizer, + lr_scheduler: _LRScheduler, +) -> Tuple[int, int, int]: + """ + Load model checkpoint, optimizer, LR scheduler and intermedidate running states. + """ + + # Update booster params states. + booster.load_model(model=model, checkpoint=os.path.join(load_dir, "modeling")) + booster.load_optimizer(optimizer=optimizer, checkpoint=os.path.join(load_dir, "optimizer")) + booster.load_lr_scheduler(lr_scheduler=lr_scheduler, checkpoint=os.path.join(load_dir, "lr_scheduler")) + + running_states = load_json(file_path=os.path.join(load_dir, "running_states.json")) + return ( + running_states["epoch"], + running_states["step"], + running_states["sample_start_index"], + ) diff --git a/applications/ColossalChat/config/conversation_template/Qwen.json b/applications/ColossalChat/config/conversation_template/Qwen.json new file mode 100644 index 000000000..09f706ffe --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/Qwen.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + null + ] +} diff --git a/applications/ColossalChat/config/conversation_template/Vicuna.json b/applications/ColossalChat/config/conversation_template/Vicuna.json new file mode 100644 index 000000000..2b00b6529 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/Vicuna.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\\n\\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don\\'t know the answer to a question, please don\\'t share false information.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<>\\n' + content.strip() + '\\n<>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/config/conversation_template/Yi.json b/applications/ColossalChat/config/conversation_template/Yi.json new file mode 100644 index 000000000..9716413b5 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/Yi.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/config/conversation_template/chatGLM2.json b/applications/ColossalChat/config/conversation_template/chatGLM2.json new file mode 100644 index 000000000..a2638dbe7 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/chatGLM2.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/config/conversation_template/colossal-llama2.json b/applications/ColossalChat/config/conversation_template/colossal-llama2.json new file mode 100644 index 000000000..cc7f1e5d7 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/colossal-llama2.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}{{'Human: ' + bos_token + message['content'].strip() + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'].strip() + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + bos_token + message['content'].strip() + eos_token }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant: ' + bos_token }}{% endif %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/config/conversation_template/llama2.json b/applications/ColossalChat/config/conversation_template/llama2.json new file mode 100644 index 000000000..80558f976 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/llama2.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/config/conversation_template/mistral.json b/applications/ColossalChat/config/conversation_template/mistral.json new file mode 100644 index 000000000..b48c3a3f2 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/mistral.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "system_message": null, + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/config/conversation_template/zephyr.json b/applications/ColossalChat/config/conversation_template/zephyr.json new file mode 100644 index 000000000..2ab141111 --- /dev/null +++ b/applications/ColossalChat/config/conversation_template/zephyr.json @@ -0,0 +1,7 @@ +{ + "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 2 + ] +} diff --git a/applications/ColossalChat/examples/README.md b/applications/ColossalChat/examples/README.md new file mode 100755 index 000000000..cfed3f1f3 --- /dev/null +++ b/applications/ColossalChat/examples/README.md @@ -0,0 +1,565 @@ +# Examples + +## Table of Contents + +- [Examples](#examples) + - [Table of Contents](#table-of-contents) + - [Install Requirements](#install-requirements) + - [Get Start with ColossalRun](#get-start-with-colossalrun) + - [Training Configuration](#training-configuration) + - [RLHF Stage 1: Supervised Instruction Tuning](#rlhf-training-stage1---supervised-instructs-tuning) + - [Step 1: Data Collection](#step-1-data-collection) + - [Step 2: Preprocessing](#step-2-preprocessing) + - [Step 3: Training](#step-3-training) + - [RLHF Stage 2: Training Reward Model](#rlhf-training-stage2---training-reward-model) + - [Step 1: Data Collection](#step-1-data-collection-1) + - [Step 2: Preprocessing](#step-2-preprocessing-1) + - [Step 3: Training](#step-3-training-1) + - [Features and Tricks in RM Training](#features-and-tricks-in-rm-training) + - [RLHF Stage 3: Proximal Policy Optimization](#rlhf-training-stage3---proximal-policy-optimization) + - [Step 1: Data Collection](#step-1-data-collection-2) + - [Step 2: Preprocessing](#step-2-preprocessing-2) + - [Step 3: Training](#step-3-training-3) + - [PPO Training Results](#sample-training-results-using-default-script) + - [Reward](#reward) + - [KL Divergence](#approximate-kl-divergence) + - [Note on PPO Training](#note-on-ppo-training) + - [Alternative Option For RLHF: Direct Preference Optimization](#alternative-option-for-rlhf-direct-preference-optimization) + - [DPO Stage 1: Supervised Instruction Tuning](#dpo-training-stage1---supervised-instructs-tuning) + - [DPO Stage 2: DPO Training](#dpo-training-stage2---dpo-training) + - [Hardware Requirements](#hardware-requirements) + - [Inference example](#inference-example) + - [Attention](#attention) + +--- + +## Install requirements + +```shell +pip install -r requirements.txt +``` + + +## Get Start with ColossalRun + +You can use colossalai run to launch multi-nodes training: +``` +colossalai run --nproc_per_node YOUR_GPU_PER_NODE --hostfile YOUR_HOST_FILE \ +train.py --OTHER_CONFIGURATIONS +``` +Here is a sample hostfile: + +``` +hostname1 +hostname2 +hostname3 +hostname4 +``` + +Make sure master node can access all nodes (including itself) by ssh without password. Here are some other arguments. + +- nnodes: number of nodes used in the training +- nproc-per-node: specifies the number of processes to be launched per node +- rdzv-endpoint: address of the host node + +### Training Configuration + +This section gives a simple introduction on different training strategies that you can use and how to use them with our boosters and plugins to reduce training time and VRAM consumption. For more detail regarding training strategies, please refer to [here](https://colossalai.org/docs/concepts/paradigms_of_parallelism). For details regarding boosters and plugins, please refer to [here](https://colossalai.org/docs/basics/booster_plugins). + + +
Gemini + +This plugin implements Zero-3 with chunk-based and heterogeneous memory management. It can train large models without much loss in speed. It also does not support local gradient accumulation. More details can be found in [Gemini Doc](https://colossalai.org/docs/features/zero_with_chunk). + +Below shows how to use the gemini in SFT training. +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin gemini \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 1 \ # the gradient accumulation has to be disabled + --lr 2e-5 \ + --max_len 2048 \ + --use_wandb +``` + +
+ +
Gemini-Auto + +This option use gemini and will automatically offload tensors with low priority to cpu. It also does not support local gradient accumulation. More details can be found in [Gemini Doc](https://colossalai.org/docs/features/zero_with_chunk). + +Below shows how to use the gemin-auto in SFT training. +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin gemini_auto \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 1 \ # the gradient accumulation has to be disabled + --lr 2e-5 \ + --max_len 2048 \ + --use_wandb +``` + +
+ + + +
Zero2 + +This option will distribute the optimizer parameters and the gradient to multiple GPUs and won't offload weights to cpu. It uses reduce and gather to synchronize gradients and weights. It does not support local gradient accumulation. Though you can accumulate gradient if you insist, it cannot reduce communication cost. That is to say, it's not a good idea to use Zero-2 with pipeline parallelism. + +Below shows how to use the zero2 in SFT training. +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin zero2 \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 4 \ + --lr 2e-5 \ + --max_len 2048 \ + --use_wandb +``` + +
+ + +
Zero2CPU + +This option will distribute the optimizer parameters and the gradient to multiple GPUs as well as offload parameters to cpu. It does not support local gradient accumulation. Though you can accumulate gradient if you insist, it cannot reduce communication cost. + +Below shows how to use the zero2-cpu in SFT training. +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin zero2_cpu \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 4 \ + --lr 2e-5 \ + --max_len 2048 \ + --use_wandb +``` + +
+ +
Tensor Parallelism + +This option support Tensor Parallelism (TP). Note that if you want to use TP, zero and pipeline parallelism will be disabled. TP split large model weights/optimizer parameters/gradients into multiple small ones and distributes them to multiple GPUs, hence it is recommended to use TP when your model is large (e.g. 20B and above) or your training algorithm consumes a lot of memory (e.g. PPO). + +Below shows how to use the TP in PPO training. +``` +colossalai run --nproc_per_node 4 --hostfile hostfile --master_port 30039 train_ppo.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --rm_pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --rm_checkpoint_path $REWARD_MODEL_PATH \ + --prompt_dataset ${prompt_dataset[@]} \ + --pretrain_dataset ${ptx_dataset[@]} \ + --ptx_batch_size 1 \ + --ptx_coef 0.0 \ + --plugin "zero2" \ + --save_interval 200 \ + --save_path $SAVE_DIR \ + --num_episodes 2000 \ + --num_collect_steps 4 \ + --num_update_steps 1 \ + --experience_batch_size 8 \ + --train_batch_size 4 \ + --accumulation_steps 8 \ + --tp 4 \ # TP size, nproc_per_node must be divisible by it + --lr 9e-6 \ + --mixed_precision "bf16" \ + --grad_clip 1.0 \ + --weight_decay 0.01 \ + --warmup_steps 100 \ + --grad_checkpoint \ + --use_wandb +``` + +
+ + +
Gradient Checkpointing + +This option saves VRAM consumption by selectively recomputing some of the intermediate value on-the-fly during the backward pass, rather than storing them in memory. + +To enable gradient checkpointing, add --grad_checkpoint to your training script. +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin zero2_cpu \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 4 \ + --lr 2e-5 \ + --max_len 2048 \ + --grad_checkpoint \ # This enables gradient checkpointing + --use_wandb +``` + +
+ +
Flash Attention + +Details about flash attention can be found in the paper: [FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness](https://arxiv.org/abs/2205.14135). + +To enable flash attention, add --use_flash_attn to your training script. +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin zero2_cpu \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 4 \ + --lr 2e-5 \ + --max_len 2048 \ + --use_flash_attn \ # This enables flash attention + --use_wandb +``` + +
+ +
Low Rank Adaption + +Details about Low Rank Adaption (LoRA) can be found in the paper: [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685). It dramatically reduce the VRAM consumption at the cost of sacrifice model capability. It is suitable for training LLM with constrained resources. + +To enable LoRA, set --lora_rank to a positive value (usually between 20 and 64). +``` +colossalai run --nproc_per_node 4 --master_port 28534 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --save_interval 5000 \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --plugin zero2_cpu \ + --batch_size 4 \ + --max_epochs 1 \ + --accumulation_steps 4 \ + --lr 2e-5 \ + --max_len 2048 \ + --lora_rank 32 \ # This enables LoRA + --use_wandb +``` + +
+ +
Other Training Arguments + +- grad_clip: gradient larger than this value will be clipped. +- weight_decay: weight decay hyper-parameter. +- warmup_steps: number of warmup steps used in setting up the learning rate scheduler. +- pretrain: pretrain model path, weights will be loaded from this pretrained model unless checkpoint_path is provided. +- tokenizer_dir: specify where to load the tokenizer, if not provided, tokenizer will be loaded from pretrain model path. +- dataset: a list of strings, each is a path to a folder contains buffered dataset files in arrow format. +- checkpoint_path: if provided, will load weights from the checkpoint_path. +- config_file: path to store the training config file. +- save_dir: path to store the model checkpoints. +- max_length: input will be padded/truncate to max_length before feeding to the model. +- max_epochs: number of epoch to train. +- batch_size: training batch size. +- mixed_precision: precision to use in training. Support 'fp16' and 'bf16'. Note that some device may not support the 'bf16' option, please refer to [Nvidia](https://developer.nvidia.com/) to check compatibility. +- save_interval: save the model weights as well as optimizer/scheduler states every save_interval steps/episodes. +- merge_lora_weights: whether to merge lora weights before saving the model +- lr: the learning rate used in training. +- accumulation_steps: accumulate gradient every accumulation_steps. +- log_dir: path to store the log. +- use_wandb: if this flag is up, you can view logs on wandb. + +
+ +### RLHF Training Stage1 - Supervised Instructs Tuning + +Stage1 is supervised instructs fine-tuning (SFT). This step is a crucial part of the RLHF training process, as it involves training a machine learning model using human-provided instructions to learn the initial behavior for the task at hand. Here's a detailed guide on how to SFT your LLM with ColossalChat: + +#### Step 1: Data Collection +The first step in Stage 1 is to collect a dataset of human demonstrations of the following format. + +```json +[ + {"messages": + [ + { + "from": "human", + "content": "what are some pranks with a pen i can do?" + }, + { + "from": "assistant", + "content": "Are you looking for practical joke ideas?" + }, + ... + ] + }, + ... +] +``` + +#### Step 2: Preprocessing +Once you have collected your SFT dataset, you will need to preprocess it. This involves four steps: data cleaning, data deduplication, formatting and tokenization. In this section, we will focus on formatting and tokenization. + +In this code we provide a flexible way for users to set the conversation template for formatting chat data using Huggingface's newest feature--- chat template. Please follow the following steps to define your chat template and preprocess your data. + +- Step 1: (Optional). Define your conversation template. You need to provide a conversation template config file similar to the config files under the ./config/conversation_template directory. This config should include the following fields. + ```json + { + "chat_template": (Optional), A string of chat_template used for formatting chat data. If not set (None), will use the default chat template of the provided tokenizer. If a path to a huggingface model or local model is provided, will use the chat_template of that model. To use a custom chat template, you need to manually set this field. For more details on how to write a chat template in Jinja format, please read https://huggingface.co/docs/transformers/main/chat_templating, + "system_message": A string of system message to be added at the beginning of the prompt. If no is provided (None), no system message will be added, + "stop_ids": (Optional), A list of string indicating the end of assistant's response during the rollout stage of PPO training. It's recommended to set this manually for PPO training. If not set, will set to tokenizer.eos_token_ids automatically, + } + ``` + On your first run of the data preparation script, you only need to define the "chat_template" (if you want to use custom chat template) and the "system message" (if you want to use a custom system message), + +- Step 2: Run the data preparation script--- [prepare_sft_dataset.sh](./examples/data_preparation_scripts/prepare_sft_dataset.sh). Note that whether or not you have skipped the first step, you need to provide the path to the conversation template config file (via the conversation_template_config arg). If you skipped the first step, an auto-generated conversation template will be stored at the designated file path. + +- Step 3: (Optional) Check the correctness of the processed data. We provided an easy way for you to do a manual checking on the processed data by checking the "$SAVE_DIR/jsonl/part-XXXX.jsonl" files. + +Finishing the above steps, you have converted the raw conversation to the designated chat format and tokenized the formatted conversation, calculate input_ids, labels, attention_masks and buffer those into binary dataset files under "$SAVE_DIR/arrow/part-XXXX" folders. + +For example, our Colossal-LLaMA-2 format looks like, +``` + A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. + +Human: what are some pranks with a pen i can do? Assistant: Are you looking for practical joke ideas? +... +``` + +#### Step 3: Training +Choose a suitable model architecture for your task. Note that your model should be compatible with the tokenizer that you used to tokenize the SFT dataset. You can run [train_sft.sh](./examples/training_scripts/train_sft.sh) to start a supervised instructs fine-tuning. Please refer to the [training configuration](#training-configuration) section for details regarding supported training options. + +### RLHF Training Stage2 - Training Reward Model + +Stage2 trains a reward model, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model. + +#### Step 1: Data Collection +Below shows the preference dataset format used in training the reward model. + +```json +[ + {"context": [ + { + "from": "human", + "content": "Introduce butterflies species in Oregon." + } + ] + "chosen": [ + { + "from": "assistant", + "content": "About 150 species of butterflies live in Oregon, with about 100 species are moths..." + }, + ... + ], + "rejected": [ + { + "from": "assistant", + "content": "Are you interested in just the common butterflies? There are a few common ones which will be easy to find..." + }, + ... + ] + }, + ... +] +``` + +#### Step 2: Preprocessing +Similar to the second step in the previous stage, we format the reward data into the same structured format as used in step 2 of the SFT stage. You can run [prepare_preference_dataset.sh](./examples/data_preparation_scripts/prepare_preference_dataset.sh) to prepare the preference data for reward model training. + +#### Step 3: Training +You can run [train_rm.sh](./examples/training_scripts/train_rm.sh) to start the reward model training. Please refer to the [training configuration](#training-configuration) section for details regarding supported training options. + +#### Features and Tricks in RM Training + +- We recommend using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)and[rm-static](https://huggingface.co/datasets/Dahoas/rm-static) datasets for training the reward model. +- We support 2 kinds of loss function named `log_sig`(used by OpenAI) and `log_exp`(used by Anthropic). +- We log the training accuracy `train/acc`, `reward_chosen` and `reward_rejected` to monitor progress during training. +- We use cosine-reducing lr-scheduler for RM training. +- We set value_head as 1 liner layer and initialize the weight of value_head using N(0,1/(d_model + 1)) distribution. + +#### Note on Reward Model Training + +Before you move on the next stage, please check the following list to ensure that your reward model is stable and robust. You can check the reward chart and the accuracy chart on wandb. +- The mean reward for chosen data is much higher than those for rejected data +- The accuracy is larger than 0.5 by a significant margin (usually should be greater than 0.6) +- Optional:check the reward is positive for chosen data vice versa + +Your training reward curves should look similar to the following charts. +

+image +

+ +### RLHF Training Stage3 - Proximal Policy Optimization + +In stage3 we will use reinforcement learning algorithm--- Proximal Policy Optimization (PPO), which is the most complex part of the training process: + +

+ +

+ +#### Step 1: Data Collection +PPO uses two kind of training data--- the prompt data and the pretrain data (optional). The first dataset is mandatory, data samples within the prompt dataset ends with a line from "human" and thus the "assistant" needs to generate a response to answer to the "human". Note that you can still use conversation that ends with a line from the "assistant", in that case, the last line will be dropped. Here is an example of the prompt dataset format. + +```json +[ + {"messages": + [ + { + "from": "human", + "content": "what are some pranks with a pen i can do?" + } + ... + ] + }, +] +``` + +The second dataset--- pretrained dataset is optional, provide it if you want to use the ptx loss introduced in the [InstructGPT paper](https://arxiv.org/abs/2203.02155). It follows the following format. + +```json + [ + { + "source": "", # system instruction + "Target": "Provide a list of the top 10 most popular mobile games in Asia\nThe top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved", + }, + ... + ] + ``` +#### Step 2: Preprocessing +To prepare the prompt dataset for PPO training, simply run [prepare_prompt_dataset.sh](./examples/data_preparation_scripts/prepare_prompt_dataset.sh) + +You can use the SFT dataset you prepared in the SFT stage or prepare a new one from different source for the ptx dataset. The ptx data is used to calculate ptx loss, which stablize the training according to the [InstructGPT paper](https://arxiv.org/pdf/2203.02155.pdf). + +#### Step 3: Training +You can run the [train_ppo.sh](./examples/training_scripts/train_ppo.sh) to start PPO training. Here are some unique arguments for PPO, please refer to the training configuration section for other training configuration. Please refer to the [training configuration](#training-configuration) section for details regarding supported training options. + +```bash +--pretrain $PRETRAINED_MODEL_PATH \ +--rm_pretrain $PRETRAINED_MODEL_PATH \ # reward model architectural +--tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ +--rm_checkpoint_path $REWARD_MODEL_PATH \ # reward model checkpoint path +--prompt_dataset ${prompt_dataset[@]} \ # List of string, prompt dataset +--conversation_template_config $CONVERSATION_TEMPLATE_CONFIG_PATH \ # path to the conversation template config file +--pretrain_dataset ${ptx_dataset[@]} \ # List of string, the sft dataset +--ptx_batch_size 1 \ # batch size for calculate ptx loss +--ptx_coef 0.0 \ # none-zero if ptx loss is enable +--num_episodes 2000 \ # number of episodes to train +--num_collect_steps 1 \ +--num_update_steps 1 \ +--experience_batch_size 8 \ +--train_batch_size 4 \ +--accumulation_steps 2 +``` + +Each episode has two phases, the collect phase and the update phase. During the collect phase, we will collect experiences (answers generated by actor), store those in ExperienceBuffer. Then data in ExperienceBuffer is used during the update phase to update parameter of actor and critic. + +- Without tensor parallelism, +``` +experience buffer size += num_process * num_collect_steps * experience_batch_size += train_batch_size * accumulation_steps * num_process +``` + +- With tensor parallelism, +``` +num_tp_group = num_process / tp +experience buffer size += num_tp_group * num_collect_steps * experience_batch_size += train_batch_size * accumulation_steps * num_tp_group +``` + +### Sample Training Results Using Default Script +#### Reward +

+image +

+ +### Note on PPO Training +#### Q1: My reward is negative +Answer: Check your reward model trained in stage 1. If the reward model only generate negative reward, we actually will expect a negative reward. However, even though the reward is negative, the reward should go up. + +#### Q2: My actor loss is negative +Answer: This is normal for actor loss as PPO doesn't restrict the actor loss to be positive. + +#### Q3: My reward doesn't go up (decreases) +Answer: The causes to this problem are two-fold. Check your reward model, make sure that it gives positive and strong reward for good cases and negative, strong reward for bad responses. You should also try different hyperparameter settings. + +#### Q4: Generation is garbage +Answer: Yes, this happens and is well documented by other implementations. After training for too many episodes, the actor gradually deviate from its original state, which may leads to decrease in language modeling capabilities. A way to fix this is to add supervised loss during PPO. Set ptx_coef to a none-zero value (between 0 and 1), which balances PPO loss and sft loss. + +## Alternative Option For RLHF: Direct Preference Optimization + +For those seeking an alternative to Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO) presents a compelling option. DPO, as detailed in the paper (available at [https://arxiv.org/abs/2305.18290](https://arxiv.org/abs/2305.18290)), DPO offers an low-cost way to perform RLHF and usually request less computation resources compares to PPO. + +### DPO Training Stage1 - Supervised Instructs Tuning + +Please refer the [sft section](#dpo-training-stage1---supervised-instructs-tuning) in the PPO part. + +### DPO Training Stage2 - DPO Training +#### Step 1: Data Collection & Preparation +For DPO training, you only need the preference dataset. Please follow the instruction in the [preference dataset preparation section](#rlhf-training-stage2---training-reward-model) to prepare the preference data for DPO training. + +#### Step 2: Training +You can run the [train_dpo.sh](./examples/training_scripts/train_dpo.sh) to start DPO training. Please refer to the [training configuration](#training-configuration) section for details regarding supported training options. + +#### DPO Result +

+image +

+ +## Hardware Requirements +For PPO, we suggest using Tensor Parallelism. The following table shows the VRAM consumption of training a 7B model on a dummy dataset with 2048 sequence length and 512 layout length with different tp_size (equal to the number of GPUs). In this experiment, we use H800 GPU with 80GB VRAM. +| PPO | tp=8 | tp=4 | +|-------|---------------|---------------| +| bs=1 | 18485.19 MB | 42934.45 MB | +| bs=4 | 25585.65 MB | 42941.93 MB | +| bs=16 | 41408.28 MB | 56778.97 MB | +| bs=30 | 64047.42 MB | failed | + +For DPO, we recommend using zero2 or zero2-cpu. We tested the VRAM consumption on a dummy dataset with 2048 sequence length. + +- 1 H800 GPU + - zero2-cpu, batch size=2, VRAM Usage=49873.90 MB + - zero2-cpu, batch size=4, VRAM Usage=60998.22 MB +- 4 H800 GPUs + - zero2, batch size=4, VRAM Usage=67544.47 MB + +## Inference example + +We support different inference options, including int8 and int4 quantization. +For details, see [`inference/`](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/inference). + +## Attention + +The examples are demos for the whole training process. You need to change the hyper-parameters to reach great performance. diff --git a/applications/Chat/examples/community/README.md b/applications/ColossalChat/examples/community/README.md old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/README.md rename to applications/ColossalChat/examples/community/README.md diff --git a/applications/Chat/examples/community/peft/README.md b/applications/ColossalChat/examples/community/peft/README.md old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/peft/README.md rename to applications/ColossalChat/examples/community/peft/README.md diff --git a/applications/Chat/examples/community/peft/easy_dataset.py b/applications/ColossalChat/examples/community/peft/easy_dataset.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/peft/easy_dataset.py rename to applications/ColossalChat/examples/community/peft/easy_dataset.py diff --git a/applications/Chat/examples/community/peft/easy_models.py b/applications/ColossalChat/examples/community/peft/easy_models.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/peft/easy_models.py rename to applications/ColossalChat/examples/community/peft/easy_models.py diff --git a/applications/Chat/examples/community/peft/train_peft_prompts.py b/applications/ColossalChat/examples/community/peft/train_peft_prompts.py old mode 100644 new mode 100755 similarity index 98% rename from applications/Chat/examples/community/peft/train_peft_prompts.py rename to applications/ColossalChat/examples/community/peft/train_peft_prompts.py index 1dd9ffcdf..4625f2bda --- a/applications/Chat/examples/community/peft/train_peft_prompts.py +++ b/applications/ColossalChat/examples/community/peft/train_peft_prompts.py @@ -24,7 +24,9 @@ def main(args): if args.strategy == "ddp": strategy = DDPStrategy() elif args.strategy == "colossalai_gemini": - strategy = GeminiStrategy(placement_policy="static", offload_optim_frac=1.0, offload_param_frac=1.0, initial_scale=2**5) + strategy = GeminiStrategy( + placement_policy="static", offload_optim_frac=1.0, offload_param_frac=1.0, initial_scale=2**5 + ) elif args.strategy == "colossalai_zero2": strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu") else: diff --git a/applications/Chat/examples/community/peft/train_peft_sft.py b/applications/ColossalChat/examples/community/peft/train_peft_sft.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/peft/train_peft_sft.py rename to applications/ColossalChat/examples/community/peft/train_peft_sft.py diff --git a/applications/Chat/examples/community/ray/README.md b/applications/ColossalChat/examples/community/ray/README.md old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/ray/README.md rename to applications/ColossalChat/examples/community/ray/README.md diff --git a/applications/Chat/examples/community/ray/ray_job_script.py b/applications/ColossalChat/examples/community/ray/ray_job_script.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/ray/ray_job_script.py rename to applications/ColossalChat/examples/community/ray/ray_job_script.py diff --git a/applications/Chat/examples/community/ray/train_prompts_on_ray.py b/applications/ColossalChat/examples/community/ray/train_prompts_on_ray.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/community/ray/train_prompts_on_ray.py rename to applications/ColossalChat/examples/community/ray/train_prompts_on_ray.py diff --git a/applications/ColossalChat/examples/data_preparation_scripts/prepare_dataset.py b/applications/ColossalChat/examples/data_preparation_scripts/prepare_dataset.py new file mode 100644 index 000000000..64093f88d --- /dev/null +++ b/applications/ColossalChat/examples/data_preparation_scripts/prepare_dataset.py @@ -0,0 +1,268 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Prepare dataset scripts + +Usage: +- For SFT dataset preparation (SFT) +python prepare_dataset.py --type sft \ + --data_input_dirs /PATH/TO/SFT/DATASET \ + --conversation_template_config /PATH/TO/CHAT/TEMPLATE/CONFIG.json \ + --tokenizer_dir "" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow \ + +- For prompt dataset preparation (PPO) +python prepare_dataset.py --type prompt \ + --data_input_dirs /PATH/TO/SFT/DATASET \ + --conversation_template_config /PATH/TO/CHAT/TEMPLATE/CONFIG.json \ + --tokenizer_dir "" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow \ + +- For Preference dataset preparation (DPO and Reward model training) +python prepare_dataset.py --type preference \ + --data_input_dirs /PATH/TO/SFT/DATASET \ + --conversation_template_config /PATH/TO/CHAT/TEMPLATE/CONFIG.json \ + --tokenizer_dir "" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow \ +""" + +import argparse +import json +import math +import os +import random +import time +from multiprocessing import cpu_count + +from coati.dataset import setup_conversation_template, supervised_tokenize_sft, tokenize_prompt_dataset, tokenize_rlhf +from datasets import dataset_dict, load_dataset +from transformers import AutoTokenizer + +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--type", + type=str, + required=True, + default=None, + choices=["sft", "prompt", "preference"], + help="Type of dataset, chose from 'sft', 'prompt', 'preference'.", + ) + parser.add_argument( + "--data_input_dirs", + type=str, + required=True, + default=None, + help="Comma(i.e., ',') separated list of all data directories containing `.jsonl` data files.", + ) + parser.add_argument( + "--tokenizer_dir", type=str, required=True, default=None, help="A directory containing the tokenizer" + ) + parser.add_argument( + "--conversation_template_config", + type=str, + default="conversation_template_config", + help="Path \ + to save conversation template config files.", + ) + parser.add_argument("--data_cache_dir", type=str, default="cache", help="Data cache directory") + parser.add_argument( + "--data_jsonl_output_dir", + type=str, + default="jsonl_output", + help="Output directory of spliced dataset with jsonl format", + ) + parser.add_argument( + "--data_arrow_output_dir", + type=str, + default="arrow_output", + help="Output directory of spliced dataset with arrow format", + ) + parser.add_argument("--max_length", type=int, default=4096, help="Max length of each spliced tokenized sequence") + parser.add_argument("--num_spliced_dataset_bins", type=int, default=10, help="Number of spliced dataset bins") + parser.add_argument( + "--num_samples_per_datafile", + type=int, + default=-1, + help="Number of samples to be generated from each data file. -1 denote all samples.", + ) + args = parser.parse_args() + + if args.num_spliced_dataset_bins >= 100000: + raise ValueError("Too many spliced divisions, must be smaller than 100000") + + assert not os.path.exists(args.data_cache_dir), f"Find existed data cache dir {args.data_cache_dir}" + assert not os.path.exists( + args.data_jsonl_output_dir + ), f"Find existed jsonl data output dir {args.data_jsonl_output_dir}" + assert not os.path.exists( + args.data_arrow_output_dir + ), f"Find existed arrow data output dir {args.data_arrow_output_dir}" + os.makedirs(args.data_jsonl_output_dir) + os.makedirs(args.data_arrow_output_dir) + + # Prepare to all input datasets + input_data_paths = [] + input_data_dirs = args.data_input_dirs.split(",") + for ds_dir in input_data_dirs: + ds_dir = os.path.abspath(ds_dir) + assert os.path.exists(ds_dir), f"Not find data dir {ds_dir}" + ds_files = [name for name in os.listdir(ds_dir) if name.endswith(".jsonl")] + ds_paths = [os.path.join(ds_dir, name) for name in ds_files] + input_data_paths.extend(ds_paths) + + # Prepare to data splitting. + train_splits = [] + split_interval = math.ceil(100 / args.num_spliced_dataset_bins) + for i in range(0, 100, split_interval): + start = i + end = i + split_interval + if end > 100: + end = 100 + train_splits.append(f"train[{start}%:{end}%]") + + # Prepare the tokenizer. + tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir, use_fast=False, trust_remote_code=True) + if os.path.exists(args.conversation_template_config): + chat_template_config = json.load(open(args.conversation_template_config, "r", encoding="utf8")) + else: + chat_template_config = { + "system_message": "A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n" + } # Use default system message + if args.type == "preference": + if "stop_ids" not in chat_template_config: + # Ask the user to define stop_ids for PPO training + dummy_messages = [ + {"role": "user", "content": "Hello, how are you?"}, + {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, + {"role": "user", "content": "Who made you?"}, + {"role": "assistant", "content": "I am a chatbot trained by Colossal-AI."}, + ] + dummy_prompt = tokenizer.apply_chat_template(dummy_messages, tokenize=False) + tokenized = tokenizer(dummy_prompt, add_special_tokens=False)["input_ids"] + tokens = tokenizer.convert_ids_to_tokens(tokenized, skip_special_tokens=False) + corresponding_str = [tokenizer.convert_tokens_to_string([token]) for token in tokens] + token_id_mapping = [{"token": s, "id": tokenized[i]} for i, s in enumerate(corresponding_str)] + stop_ids = input( + "For PPO, we recommend to provide stop_ids for the properly stop the generation during roll out stage. " + "stop_ids are the ids of repetitive pattern that indicate the end of the assistant's response. " + "Here is an example of formatted prompt and token-id mapping, you can set stop_ids by entering a list " + "of integers, separate by space, press `Enter` to end. Or you can press `Enter` without input if you are " + "not using PPO or you prefer to not set the stop_ids, in that case, stop_ids will be set to tokenizer.eos_token_id. " + f"\nPrompt:\n{dummy_prompt}\nToken-id Mapping:\n{token_id_mapping}\nstop_ids:" + ) + if stop_ids == "": + chat_template_config["stop_ids"] = [tokenizer.eos_token_id] + else: + try: + chat_template_config["stop_ids"] = [int(s) for s in stop_ids.split()] + except ValueError: + raise ValueError("Invalid input, please provide a list of integers.") + else: + # Set stop_ids to eos_token_id for other dataset types if not exist + if "stop_ids" not in chat_template_config: + chat_template_config["stop_ids"] = [tokenizer.eos_token_id] + + conversation_template = setup_conversation_template( + tokenizer, chat_template_config=chat_template_config, save_path=args.conversation_template_config + ) + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None: + logger.warning( + "The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them." + ) + + list_dataset = load_dataset( + path="json", + data_files=input_data_paths, + cache_dir=os.path.join(args.data_cache_dir, "raw"), + keep_in_memory=False, + split=train_splits, + num_proc=cpu_count(), + ) + + if args.type == "sft": + preparation_function = supervised_tokenize_sft + elif args.type == "prompt": + preparation_function = tokenize_prompt_dataset + elif args.type == "preference": + preparation_function = tokenize_rlhf + else: + raise ValueError("Unknow dataset type. Please choose one from ['sft', 'prompt', 'preference']") + + for index, dataset in enumerate(list_dataset): + assert isinstance(dataset, dataset_dict.Dataset) + if len(dataset) == 0: + # Hack: Skip empty dataset. If dataset contains less than num_of_rank samples, some rank may have empty dataset and leads to error + continue + if args.num_samples_per_datafile > 0: + # limit the number of samples in each dataset + dataset = dataset.select( + random.sample(range(len(dataset)), min(args.num_samples_per_datafile, len(dataset))) + ) + logger.info(f"Start to process part-{index}/{len(list_dataset)} of all original datasets.") + dataset = dataset.map( + function=preparation_function, + fn_kwargs={ + "tokenizer": tokenizer, + "conversation_template": conversation_template, + "max_length": args.max_length, + }, + keep_in_memory=False, + num_proc=min(len(dataset), cpu_count()), + ) + + dataset = dataset.filter( + lambda data: data["chosen_input_ids" if args.type == "preference" else "input_ids"] is not None + ) + + # Save each jsonl spliced dataset. + output_index = "0" * (5 - len(str(index))) + str(index) + output_name = f"part-{output_index}" + output_jsonl_path = os.path.join(args.data_jsonl_output_dir, output_name + ".jsonl") + st = time.time() + with open(file=output_jsonl_path, mode="w", encoding="utf-8") as fp_writer: + count = 0 + for data_point in dataset: + if count % 500 == 0: + logger.info(f"processing {count} spliced data points for {fp_writer.name}") + count += 1 + fp_writer.write(json.dumps(data_point, ensure_ascii=False) + "\n") + logger.info( + f"Current file {fp_writer.name}; " + f"Data size: {len(dataset)}; " + f"Time cost: {round((time.time() - st) / 60, 6)} minutes." + ) + # Save each arrow spliced dataset + output_arrow_path = os.path.join(args.data_arrow_output_dir, output_name) + logger.info(f"Start to save {output_arrow_path}") + dataset = load_dataset( + path="json", + data_files=[output_jsonl_path], + cache_dir=os.path.join(args.data_cache_dir, "tokenized"), + keep_in_memory=False, + num_proc=cpu_count(), + split="train", + ) + dataset.save_to_disk(dataset_path=output_arrow_path, num_proc=min(len(dataset), cpu_count())) + + +if __name__ == "__main__": + main() diff --git a/applications/ColossalChat/examples/data_preparation_scripts/prepare_preference_dataset.sh b/applications/ColossalChat/examples/data_preparation_scripts/prepare_preference_dataset.sh new file mode 100755 index 000000000..999d7778b --- /dev/null +++ b/applications/ColossalChat/examples/data_preparation_scripts/prepare_preference_dataset.sh @@ -0,0 +1,13 @@ +SAVE_DIR="" + +rm -rf $SAVE_DIR/cache +rm -rf $SAVE_DIR/jsonl +rm -rf $SAVE_DIR/arrow + +python prepare_dataset.py --type preference \ + --data_input_dirs "PATH/TO/PREFERENCE/DATA" \ + --conversation_template_config /PATH/TO/CHAT/TEMPLATE/CONFIG.json \ + --tokenizer_dir "" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow diff --git a/applications/ColossalChat/examples/data_preparation_scripts/prepare_prompt_dataset.sh b/applications/ColossalChat/examples/data_preparation_scripts/prepare_prompt_dataset.sh new file mode 100755 index 000000000..8d3d6c2c2 --- /dev/null +++ b/applications/ColossalChat/examples/data_preparation_scripts/prepare_prompt_dataset.sh @@ -0,0 +1,13 @@ +SAVE_DIR="" + +rm -rf $SAVE_DIR/cache +rm -rf $SAVE_DIR/jsonl +rm -rf $SAVE_DIR/arrow + +python prepare_dataset.py --type prompt \ + --data_input_dirs /PATH/TO/PROMPT/DATASET \ + --conversation_template_config /PATH/TO/CHAT/TEMPLATE/CONFIG.json \ + --tokenizer_dir "" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow diff --git a/applications/ColossalChat/examples/data_preparation_scripts/prepare_sft_dataset.sh b/applications/ColossalChat/examples/data_preparation_scripts/prepare_sft_dataset.sh new file mode 100755 index 000000000..cf937db2a --- /dev/null +++ b/applications/ColossalChat/examples/data_preparation_scripts/prepare_sft_dataset.sh @@ -0,0 +1,13 @@ +SAVE_DIR="" + +rm -rf $SAVE_DIR/cache +rm -rf $SAVE_DIR/jsonl +rm -rf $SAVE_DIR/arrow + +python prepare_dataset.py --type sft \ + --data_input_dirs /PATH/TO/SFT/DATASET \ + --conversation_template_config /PATH/TO/CHAT/TEMPLATE/CONFIG.json \ + --tokenizer_dir "" \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow \ diff --git a/applications/ColossalChat/examples/inference/chatio.py b/applications/ColossalChat/examples/inference/chatio.py new file mode 100755 index 000000000..26784f3a3 --- /dev/null +++ b/applications/ColossalChat/examples/inference/chatio.py @@ -0,0 +1,168 @@ +""" +command line IO utils for chatbot +""" + +import abc +import re + +from prompt_toolkit import PromptSession +from prompt_toolkit.auto_suggest import AutoSuggestFromHistory +from prompt_toolkit.completion import WordCompleter +from prompt_toolkit.history import InMemoryHistory +from rich.console import Console +from rich.live import Live +from rich.markdown import Markdown + + +class ChatIO(abc.ABC): + @abc.abstractmethod + def prompt_for_input(self, role: str) -> str: + """Prompt for input from a role.""" + + @abc.abstractmethod + def prompt_for_output(self, role: str): + """Prompt for output from a role.""" + + @abc.abstractmethod + def stream_output(self, output_stream): + """Stream output.""" + + +class SimpleChatIO(ChatIO): + def prompt_for_input(self, role) -> str: + return input(f"{role}: ") + + def prompt_for_output(self, role: str): + print(f"{role}: ", end="", flush=True) + + def stream_output(self, output_stream): + pre = 0 + for outputs in output_stream: + outputs = outputs.strip() + outputs = outputs.split(" ") + now = len(outputs) - 1 + if now > pre: + print(" ".join(outputs[pre:now]), end=" ", flush=True) + pre = now + print(" ".join(outputs[pre:]), flush=True) + return " ".join(outputs) + + +class RichChatIO(ChatIO): + def __init__(self): + self._prompt_session = PromptSession(history=InMemoryHistory()) + self._completer = WordCompleter(words=["!exit", "!reset"], pattern=re.compile("$")) + self._console = Console() + + def prompt_for_input(self, role) -> str: + self._console.print(f"[bold]{role}:") + prompt_input = self._prompt_session.prompt( + completer=self._completer, + multiline=False, + auto_suggest=AutoSuggestFromHistory(), + key_bindings=None, + ) + self._console.print() + return prompt_input + + def prompt_for_output(self, role: str) -> str: + self._console.print(f"[bold]{role}:") + + def stream_output(self, output_stream): + """Stream output from a role.""" + # Create a Live context for updating the console output + with Live(console=self._console, refresh_per_second=60) as live: + # Read lines from the stream + for outputs in output_stream: + accumulated_text = outputs + if not accumulated_text: + continue + # Render the accumulated text as Markdown + # NOTE: this is a workaround for the rendering "unstandard markdown" + # in rich. The chatbots output treat "\n" as a new line for + # better compatibility with real-world text. However, rendering + # in markdown would break the format. It is because standard markdown + # treat a single "\n" in normal text as a space. + # Our workaround is adding two spaces at the end of each line. + # This is not a perfect solution, as it would + # introduce trailing spaces (only) in code block, but it works well + # especially for console output, because in general the console does not + # care about trailing spaces. + lines = [] + for line in accumulated_text.splitlines(): + lines.append(line) + if line.startswith("```"): + # Code block marker - do not add trailing spaces, as it would + # break the syntax highlighting + lines.append("\n") + else: + lines.append(" \n") + markdown = Markdown("".join(lines)) + # Update the Live console output + live.update(markdown) + self._console.print() + return outputs + + +class DummyChatIO(ChatIO): + """ + Dummy ChatIO class for testing + """ + + def __init__(self): + self.roles = [] + self._console = Console() + + def prompt_for_input(self, role) -> str: + self.roles.append(role) + if len(self.roles) == 1: + ret = "Hello" + elif len(self.roles) == 2: + ret = "What's the value of 1+1?" + else: + ret = "exit" + self._console.print(f"[bold]{role}:{ret}") + return ret + + def prompt_for_output(self, role: str) -> str: + self._console.print(f"[bold]{role}:") + + def stream_output(self, output_stream): + """Stream output from a role.""" + # Create a Live context for updating the console output + with Live(console=self._console, refresh_per_second=60) as live: + # Read lines from the stream + for outputs in output_stream: + accumulated_text = outputs + if not accumulated_text: + continue + # Render the accumulated text as Markdown + # NOTE: this is a workaround for the rendering "unstandard markdown" + # in rich. The chatbots output treat "\n" as a new line for + # better compatibility with real-world text. However, rendering + # in markdown would break the format. It is because standard markdown + # treat a single "\n" in normal text as a space. + # Our workaround is adding two spaces at the end of each line. + # This is not a perfect solution, as it would + # introduce trailing spaces (only) in code block, but it works well + # especially for console output, because in general the console does not + # care about trailing spaces. + lines = [] + for line in accumulated_text.splitlines(): + lines.append(line) + if line.startswith("```"): + # Code block marker - do not add trailing spaces, as it would + # break the syntax highlighting + lines.append("\n") + else: + lines.append(" \n") + markdown = Markdown("".join(lines)) + # Update the Live console output + live.update(markdown) + self._console.print() + return outputs + + +simple_io = SimpleChatIO() +rich_io = RichChatIO() +dummy_io = DummyChatIO() diff --git a/applications/ColossalChat/examples/inference/inference.py b/applications/ColossalChat/examples/inference/inference.py new file mode 100755 index 000000000..103bd8d95 --- /dev/null +++ b/applications/ColossalChat/examples/inference/inference.py @@ -0,0 +1,195 @@ +import argparse +import json +import os +from typing import Dict + +import torch +from chatio import dummy_io, rich_io, simple_io +from coati.dataset.conversation import setup_conversation_template +from coati.models import generate_streaming +from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel + +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + + +def get_gpu_memory(max_gpus=None): + """ + Get the available memory for each GPU. + + Args: + max_gpus (int, optional): The maximum number of GPUs to consider. Defaults to None. + + Returns: + list: A list of available memory for each GPU. + """ + gpu_memory = [] + num_gpus = torch.cuda.device_count() if max_gpus is None else min(max_gpus, torch.cuda.device_count()) + + for gpu_id in range(num_gpus): + # Code to get GPU memory goes here + with torch.cuda.device(gpu_id): + device = torch.cuda.current_device() + gpu_properties = torch.cuda.get_device_properties(device) + total_memory = gpu_properties.total_memory / (1024**3) + allocated_memory = torch.cuda.memory_allocated() / (1024**3) + available_memory = total_memory - allocated_memory + gpu_memory.append(available_memory) + return gpu_memory + + +def load_model_and_tokenizer(model_path, tokenizer_path, device="cuda", **kwargs): + """ + Load the model and tokenizer from the specified paths and move the model to the specified device. + + Args: + model_path (str): The path to the pre-trained model. + tokenizer_path (str): The path to the pre-trained tokenizer. + device (str, optional): The device to move the model to. Defaults to "cuda". + **kwargs: Additional keyword arguments to be passed to the `AutoModelForCausalLM.from_pretrained` function. + + Returns: + tuple: A tuple containing the loaded model and tokenizer. + """ + + model = AutoModelForCausalLM.from_pretrained(model_path, **kwargs) + tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) + tokenizer.pad_token = tokenizer.eos_token + model.to(device) + + return model, tokenizer + + +def _set_default_generate_kwargs(model: PreTrainedModel) -> Dict: + """ + Set default keyword arguments for generation based on the given model. + + Args: + model (PreTrainedModel): The model used for generation. + + Returns: + Dict: A dictionary containing the default keyword arguments for generation. + """ + unwrapped_model = model + new_kwargs = {} + # Use huggingface models method directly + if hasattr(unwrapped_model, "prepare_inputs_for_generation"): + new_kwargs["prepare_inputs_fn"] = unwrapped_model.prepare_inputs_for_generation + + if hasattr(unwrapped_model, "_update_model_kwargs_for_generation"): + new_kwargs["update_model_kwargs_fn"] = unwrapped_model._update_model_kwargs_for_generation + return new_kwargs + + +def generation_wrapper(*args, **kwargs): + input_ids = args[1] + tokenizer = args[2] + for output in generate_streaming(*args, **kwargs): + yield tokenizer.batch_decode(output[:, input_ids.size(1) :], skip_special_tokens=True)[0] + + +def main(args): + conversation_template_config = json.load(open(args.conversation_template_config, "r", encoding="utf8")) + + max_new_tokens = args.max_new_tokens + model_max_length = args.model_max_length + model, tokenizer = load_model_and_tokenizer( + args.model_path, args.tokenizer_path or args.model_path, local_files_only=True + ) + + assert max_new_tokens <= model_max_length + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + tokenizer.padding_side = "left" + + model_kwargs = { + "max_new_tokens": max_new_tokens, + # 'early_stopping': True, + # 'top_k': -1, + # 'top_p': 1.0, + # 'temperature': 1.0, + # 'temperature':0.1, + } + round = 1 + + conv = setup_conversation_template(tokenizer, conversation_template_config, args.conversation_template_config) + + while True: + if args.io == "simple": + chat_io = simple_io + elif args.io == "rich": + chat_io = rich_io + elif args.io == "dummy": + chat_io = dummy_io + else: + raise ValueError(f"Unknown io type: {args.io}") + # raw_text = print(">>> Human:", end=" ") + inp = chat_io.prompt_for_input("user") + + if not inp: + print("prompt should not be empty!") + continue + + if inp.strip() == "clear": + conv.clear() + os.system("clear") + continue + + if inp.strip() == "exit": + print("End of chat.") + break + + query_text = inp.strip() + + conv.append_message("user", query_text) + + chat_io.prompt_for_output("assistant") + + prompt = conv.get_prompt(add_generation_prompt=True) + print(prompt + "") + input_ids = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].to( + torch.cuda.current_device() + ) + default_generate_kwargs = _set_default_generate_kwargs(model) + model_kwargs.update(default_generate_kwargs) + output_stream = generation_wrapper( + model, + input_ids, + tokenizer, + max_length=model_max_length, + temperature=0.7, + early_stopping=True, + stop_token_ids=conversation_template_config["stop_ids"], + **model_kwargs, + ) + + # print(f">>> Assistant:", end=" ") + outputs = chat_io.stream_output(output_stream) + + conv.append_message("assistant", outputs.strip()) + + with open("round.txt", mode="a", encoding="utf-8") as f: + f.write("\n\n" + "=" * 10 + "\n") + f.write(f"round {round}:\n{conv.save_prompt()}\n\n") + f.write("=" * 10 + "\n") + + # print(f">>> Assistant:", end=" ") + + round += 1 + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model_path", type=str, default=None) + parser.add_argument("--tokenizer_path", type=str, default=None) + parser.add_argument("--conversation_template_config", type=str, default=None) + parser.add_argument("--model_max_length", type=int, default=2048) + parser.add_argument("--max_new_tokens", type=int, default=512) + parser.add_argument("--io", type=str, default="rich", choices=["simple", "rich", "dummy"]) + args = parser.parse_args() + main(args) diff --git a/applications/Chat/inference/README.md b/applications/ColossalChat/examples/inference/web_chatbot/README.md old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/inference/README.md rename to applications/ColossalChat/examples/inference/web_chatbot/README.md diff --git a/applications/Chat/inference/locustfile.py b/applications/ColossalChat/examples/inference/web_chatbot/locustfile.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/inference/locustfile.py rename to applications/ColossalChat/examples/inference/web_chatbot/locustfile.py diff --git a/applications/Chat/inference/requirements.txt b/applications/ColossalChat/examples/inference/web_chatbot/requirements.txt old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/inference/requirements.txt rename to applications/ColossalChat/examples/inference/web_chatbot/requirements.txt diff --git a/applications/Chat/inference/server.py b/applications/ColossalChat/examples/inference/web_chatbot/server.py old mode 100644 new mode 100755 similarity index 79% rename from applications/Chat/inference/server.py rename to applications/ColossalChat/examples/inference/web_chatbot/server.py index 7c6a61b9e..aec342802 --- a/applications/Chat/inference/server.py +++ b/applications/ColossalChat/examples/inference/web_chatbot/server.py @@ -5,6 +5,7 @@ from typing import Generator, List, Optional import torch import uvicorn +from coati.models import generate_streaming from coati.quant import llama_load_quant, low_resource_init from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware @@ -13,10 +14,9 @@ from slowapi import Limiter, _rate_limit_exceeded_handler from slowapi.errors import RateLimitExceeded from slowapi.util import get_remote_address from sse_starlette.sse import EventSourceResponse -from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM -from utils import ChatPromptProcessor, Dialogue, LockedIterator, load_json, sample_streamingly, update_model_kwargs_fn +from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer +from utils import ChatPromptProcessor, Dialogue, LockedIterator, load_json, update_model_kwargs_fn -CONTEXT = "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions." MAX_LEN = 512 running_lock = Lock() @@ -54,20 +54,22 @@ app.add_middleware( ) -def generate_streamingly(prompt, max_new_tokens, top_k, top_p, temperature): - inputs = {k: v.cuda() for k, v in tokenizer(prompt, return_tensors="pt").items()} +def generate_streamingly(prompt, max_length, max_new_tokens, top_k, top_p, temperature): + input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"] # TODO(ver217): streaming generation does not support repetition_penalty now model_kwargs = { - "max_generate_tokens": max_new_tokens, + "max_new_tokens": max_new_tokens, "early_stopping": True, "top_k": top_k, "top_p": top_p, "temperature": temperature, - "prepare_inputs_fn": model.prepare_inputs_for_generation, + "prepare_inputs_fn": None, "update_model_kwargs_fn": update_model_kwargs_fn, } is_first_word = True - generator = LockedIterator(sample_streamingly(model, **inputs, **model_kwargs), running_lock) + generator = LockedIterator( + generate_streaming(model, input_ids, tokenizer, max_length, **model_kwargs), running_lock + ) for output in generator: output = output.cpu() tokens = tokenizer.convert_ids_to_tokens(output, skip_special_tokens=True) @@ -101,9 +103,10 @@ async def event_generator(request: Request, generator: Generator): @app.post("/generate/stream") @limiter.limit("1/second") def generate(data: GenerationTaskReq, request: Request): - prompt = prompt_processor.preprocess_prompt(data.history, data.max_new_tokens) + prompt = prompt_processor.preprocess_prompt(data.history) event_source = event_generator( - request, generate_streamingly(prompt, data.max_new_tokens, data.top_k, data.top_p, data.temperature) + request, + generate_streamingly(prompt, data.max_length, data.max_new_tokens, data.top_k, data.top_p, data.temperature), ) return EventSourceResponse(event_source) @@ -133,6 +136,11 @@ if __name__ == "__main__": "pretrained", help="Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.", ) + parser.add_argument( + "--tokenizer_path", + help="Path to pretrained tokenizer. Can be a local path or a model name from the HuggingFace model hub.", + default=None, + ) parser.add_argument( "--quant", choices=["8bit", "4bit"], @@ -162,26 +170,29 @@ if __name__ == "__main__": if args.quant == "4bit": assert args.gptq_checkpoint is not None, "Please specify a GPTQ checkpoint." - tokenizer = AutoTokenizer.from_pretrained(args.pretrained) + if args.tokenizer_path is None: + args.tokenizer_path = args.pretrained + tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, local_files_only=True) if args.profanity_file is not None: censored_words = load_json(args.profanity_file) else: censored_words = [] - prompt_processor = ChatPromptProcessor(tokenizer, CONTEXT, MAX_LEN, censored_words=censored_words) + prompt_processor = ChatPromptProcessor(censored_words=censored_words) if args.quant == "4bit": with low_resource_init(): - config = LlamaConfig.from_pretrained(args.pretrained) - model = LlamaForCausalLM(config) + config = AutoConfig.from_pretrained(args.pretrained) + model = AutoModelForCausalLM(config) model = llama_load_quant(model, args.gptq_checkpoint, 4, args.gptq_group_size) model.cuda() else: - model = LlamaForCausalLM.from_pretrained( + model = AutoModelForCausalLM.from_pretrained( args.pretrained, load_in_8bit=(args.quant == "8bit"), torch_dtype=torch.float16, device_map="auto", + local_files_only=True, ) if args.quant != "8bit": model.half() # seems to fix bugs for some users. @@ -190,3 +201,8 @@ if __name__ == "__main__": config = uvicorn.Config(app, host=args.http_host, port=args.http_port) server = uvicorn.Server(config=config) server.run() + + +""" +python server.py /home/lcyab/data/models/experiments5/checkpoint/experiment5-2023-10-20-21-53-51/modeling/ --tokenizer_path /mnt/vepfs/lcxyc/leaderboard_models/Colossal-LLaMA-2-7b-base/ +""" diff --git a/applications/ColossalChat/examples/inference/web_chatbot/utils.py b/applications/ColossalChat/examples/inference/web_chatbot/utils.py new file mode 100755 index 000000000..82a1a7255 --- /dev/null +++ b/applications/ColossalChat/examples/inference/web_chatbot/utils.py @@ -0,0 +1,78 @@ +import copy +import json +from threading import Lock +from typing import List + +import jieba +import torch +from coati.dataset.conversation import default_conversation +from pydantic import BaseModel, Field + + +def update_model_kwargs_fn(outputs: dict, **model_kwargs) -> dict: + if "past_key_values" in outputs: + model_kwargs["past"] = outputs["past_key_values"] + else: + model_kwargs["past"] = None + + # update token_type_ids with last value + if "token_type_ids" in model_kwargs: + token_type_ids = model_kwargs["token_type_ids"] + model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) + + # update attention mask + if "attention_mask" in model_kwargs: + attention_mask = model_kwargs["attention_mask"] + model_kwargs["attention_mask"] = torch.cat( + [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 + ) + + return model_kwargs + + +class Dialogue(BaseModel): + instruction: str = Field(min_length=1, example="Count up from 1 to 500.") + response: str = Field(example="") + + +class ChatPromptProcessor: + SAFE_RESPONSE = "The input/response contains inappropriate content, please rephrase your prompt." + + def __init__(self, censored_words: List[str] = []): + self.censored_words = set([word.lower() for word in censored_words]) + self.conv = copy.deepcopy(default_conversation) + + def preprocess_prompt(self, history: List[Dialogue]) -> str: + self.conv.clear() + for round in history: + self.conv.append_message(self.conv.roles[0], round.instruction) + if len(round.instruction) > 0: + self.conv.append_message(self.conv.roles[1], round.response) + return self.conv.get_prompt() + + def postprocess_output(self, output: str) -> str: + return output.strip() + + def has_censored_words(self, text: str) -> bool: + if len(self.censored_words) == 0: + return False + intersection = set(jieba.cut(text.lower())) & self.censored_words + return len(intersection) > 0 + + +class LockedIterator: + def __init__(self, it, lock: Lock) -> None: + self.lock = lock + self.it = iter(it) + + def __iter__(self): + return self + + def __next__(self): + with self.lock: + return next(self.it) + + +def load_json(path: str): + with open(path) as f: + return json.load(f) diff --git a/applications/Chat/examples/ray/1mmt_prompt.py b/applications/ColossalChat/examples/ray/1mmt_prompt.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/ray/1mmt_prompt.py rename to applications/ColossalChat/examples/ray/1mmt_prompt.py diff --git a/applications/Chat/examples/ray/mmmt_prompt.py b/applications/ColossalChat/examples/ray/mmmt_prompt.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/ray/mmmt_prompt.py rename to applications/ColossalChat/examples/ray/mmmt_prompt.py diff --git a/applications/Chat/examples/ray/requirements.txt b/applications/ColossalChat/examples/ray/requirements.txt old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/examples/ray/requirements.txt rename to applications/ColossalChat/examples/ray/requirements.txt diff --git a/applications/Chat/examples/ray/test_ci.sh b/applications/ColossalChat/examples/ray/test_ci.sh similarity index 100% rename from applications/Chat/examples/ray/test_ci.sh rename to applications/ColossalChat/examples/ray/test_ci.sh diff --git a/applications/Chat/examples/requirements.txt b/applications/ColossalChat/examples/requirements.txt similarity index 51% rename from applications/Chat/examples/requirements.txt rename to applications/ColossalChat/examples/requirements.txt index 5474dfa16..838590f4b 100644 --- a/applications/Chat/examples/requirements.txt +++ b/applications/ColossalChat/examples/requirements.txt @@ -1,3 +1,4 @@ pandas>=1.4.1 sentencepiece -colossalai==0.3.3 +colossalai +prompt_toolkit diff --git a/applications/ColossalChat/examples/training_scripts/hostfile b/applications/ColossalChat/examples/training_scripts/hostfile new file mode 100755 index 000000000..d4118dda9 --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/hostfile @@ -0,0 +1 @@ +10.20.1.82 diff --git a/applications/ColossalChat/examples/training_scripts/train_dpo.py b/applications/ColossalChat/examples/training_scripts/train_dpo.py new file mode 100755 index 000000000..aae034683 --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_dpo.py @@ -0,0 +1,326 @@ +import argparse +import json +import os +import resource +from contextlib import nullcontext + +import torch +from coati.dataset import ( + DataCollatorForPreferenceDataset, + StatefulDistributedSampler, + load_tokenized_dataset, + setup_distributed_dataloader, +) +from coati.models import convert_to_lora_module, disable_dropout +from coati.trainer import DPOTrainer +from coati.utils import load_checkpoint +from transformers import AutoModelForCausalLM, AutoTokenizer + +import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin +from colossalai.cluster import DistCoordinator +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam +from colossalai.utils import get_current_device +from colossalai.logging import get_dist_logger + +logger = get_dist_logger() + +def train(args): + # check lora compatibility + if "gemini" in args.plugin and args.lora_rank > 0: + raise ValueError("LoRA is not supported in GeminiPlugin. Please use other plugin") + if args.plugin == "gemini_auto" and args.accumulation_steps > 1: + raise ValueError("Gradient accumulation is not supported in GeminiPlugin. Please use other plugin") + + # ============================== + # Initialize Distributed Training + # ============================== + colossalai.launch_from_torch({}) + coordinator = DistCoordinator() + + # ============================== + # Initialize Booster + # ============================== + if args.plugin == "ddp": + """ + Default torch ddp plugin without any acceleration, for + debugging purpose acceleration, for debugging purpose + """ + plugin = TorchDDPPlugin(find_unused_parameters=True) + elif args.plugin == "gemini": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="static", + initial_scale=2**16, + max_norm=args.grad_clip, + enable_gradient_accumulation=True, + ) + elif args.plugin == "gemini_auto": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="auto", + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2_cpu": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + cpu_offload=True, + max_norm=args.grad_clip, + ) + elif args.plugin == "3d": + plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + parallel_output=False, + precision=args.mixed_precision, + ) + else: + raise ValueError(f"Unknown plugin {args.plugin}") + + booster = Booster(plugin=plugin) + ref_booster = Booster(plugin=plugin) + + # ====================================================== + # Initialize Model, Objective, Optimizer and LR Scheduler + # ====================================================== + # Temp Fix: Disable lazy init due to version conflict + # init_ctx = ( + # LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext() + # ) + + init_ctx = nullcontext() + with init_ctx: + if args.use_flash_attn: + model = AutoModelForCausalLM.from_pretrained( + args.pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + ) + coordinator.print_on_master(msg="Flash-attention enabled successfully") + else: + model = AutoModelForCausalLM.from_pretrained(args.pretrain) + disable_dropout(model) + if args.enable_reference_model: + if args.use_flash_attn: + ref_model = AutoModelForCausalLM.from_pretrained( + args.pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + ) + else: + ref_model = AutoModelForCausalLM.from_pretrained(args.pretrain) + disable_dropout(ref_model) + else: + ref_model = None + + if args.lora_rank > 0: + model = convert_to_lora_module(model, args.lora_rank, lora_train_bias=args.lora_train_bias) + + if args.grad_checkpoint and args.lora_rank == 0: + model.gradient_checkpointing_enable() + coordinator.print_on_master(msg="Gradient checkpointing enabled successfully") + elif args.lora_rank > 0: + coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled") + + # configure tokenizer + tokenizer_dir = args.tokenizer_dir if args.tokenizer_dir is not None else args.pretrain + tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=False, trust_remote_code=True) + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None: + logger.warning( + "The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them." + ) + + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + + # configure optimizer + optim = HybridAdam( + model_params=model.parameters(), + lr=args.lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + # configure dataset + coordinator.print_on_master(f"Load dataset: {args.dataset}") + mode_map = {"train": "train", "valid": "validation", "test": "test"} + train_dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train", mode_map=mode_map) + data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length) + train_dataloader = setup_distributed_dataloader( + dataset=train_dataset, + batch_size=args.batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + + num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps + if args.warmup_steps is None: + args.warmup_steps = int(args.max_epochs * 0.025 * (len(train_dataloader) // args.accumulation_steps)) + coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}") + + lr_scheduler = CosineAnnealingWarmupLR( + optimizer=optim, + total_steps=args.max_epochs * num_update_steps_per_epoch, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16 + torch.set_default_dtype(default_dtype) + model, optim, _, train_dataloader, lr_scheduler = booster.boost( + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + dataloader=train_dataloader, + ) + if ref_model is not None: + ref_model, _, _, _, _ = ref_booster.boost(model=ref_model, dataloader=train_dataloader) + torch.set_default_dtype(torch.float) + + coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB") + coordinator.print_on_master( + f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + start_epoch = 0 + sampler_start_idx = 0 + start_step = 0 + if args.checkpoint_path is not None: + if "modeling" in args.checkpoint_path: + coordinator.print_on_master(f"Continued pretrain from checkpoint {args.checkpoint_path}") + booster.load_model(model, args.checkpoint_path) + else: + coordinator.print_on_master(f"Load model checkpoint from {args.checkpoint_path}") + start_epoch, start_step, sampler_start_idx = load_checkpoint( + load_dir=args.checkpoint_path, + booster=booster, + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + ) + assert isinstance(train_dataloader.sampler, StatefulDistributedSampler) + train_dataloader.sampler.set_start_index(start_index=sampler_start_idx) + + coordinator.print_on_master( + f"Loaded checkpoint {args.checkpoint_path} at epoch {start_epoch} step {start_step}" + ) + coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}") + + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + trainer = DPOTrainer( + actor=model, + ref_model=ref_model, + booster=booster, + actor_optim=optim, + actor_lr_scheduler=lr_scheduler, + tokenizer=tokenizer, + max_epochs=args.max_epochs, + accumulation_steps=args.accumulation_steps, + start_epoch=start_epoch, + save_interval=args.save_interval, + save_dir=args.save_dir, + coordinator=coordinator, + ) + + trainer.fit( + train_preference_dataloader=train_dataloader, + eval_preference_dataloader=None, + log_dir=args.log_dir, + use_wandb=args.use_wandb, + ) + + if args.lora_rank > 0 and args.merge_lora_weights: + from coati.models.lora import LORA_MANAGER + + # NOTE: set model to eval to merge LoRA weights + LORA_MANAGER.merge_weights = True + model.eval() + # save model checkpoint after fitting on only rank0 + coordinator.print_on_master("Start saving final model checkpoint") + booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True) + coordinator.print_on_master(f"Saved final model checkpoint at epoch {args.max_epochs} at folder {args.save_dir}") + + coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB") + + +if __name__ == "__main__": + # ============================== + # Parse Arguments + # ============================== + parser = argparse.ArgumentParser() + parser.add_argument( + "--plugin", + type=str, + default="gemini", + choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"], + help="Choose which plugin to use", + ) + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value") + parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay") + parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps") + parser.add_argument("--tp", type=int, default=1) + parser.add_argument("--pretrain", type=str, default=None) + parser.add_argument("--model_type", type=str, default=None) + parser.add_argument("--tokenizer_dir", type=str, default=None) + parser.add_argument("--dataset", nargs="+", default=[]) + parser.add_argument( + "--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint" + ) + parser.add_argument("--config_file", type=str, default="config_file", help="Config file") + parser.add_argument("--save_dir", type=str, default="output") + parser.add_argument("--max_length", type=int, default=2048, help="Model max length") + parser.add_argument("--max_epochs", type=int, default=3) + parser.add_argument("--batch_size", type=int, default=4) + parser.add_argument("--enable_reference_model", type=bool, default=True) + parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision") + parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") + parser.add_argument( + "--lora_train_bias", + type=str, + default="none", + help="'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers", + ) + parser.add_argument("--save_interval", type=int, default=1000, help="number of step between two checkpoints") + parser.add_argument("--merge_lora_weights", type=bool, default=True) + parser.add_argument("--lr", type=float, default=5e-6) + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--log_dir", default="logs", type=str) + parser.add_argument("--use_wandb", default=False, action="store_true") + parser.add_argument("--grad_checkpoint", default=False, action="store_true") + parser.add_argument("--use_flash_attn", default=False, action="store_true") + args = parser.parse_args() + os.makedirs(os.path.dirname(args.config_file), exist_ok=True) + with open(args.config_file, "w") as f: + json.dump(args.__dict__, f, indent=4) + train(args) diff --git a/applications/ColossalChat/examples/training_scripts/train_dpo.sh b/applications/ColossalChat/examples/training_scripts/train_dpo.sh new file mode 100755 index 000000000..80fc30c3d --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_dpo.sh @@ -0,0 +1,62 @@ +#!/bin/bash +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} +set_n_least_used_CUDA_VISIBLE_DEVICES 8 +# export CUDA_VISIBLE_DEVICES=6 + +PROJECT_NAME="dpo" +PARENT_SAVE_DIR="" # Path to a folder to save checkpoints +PARENT_TENSORBOARD_DIR="" # Path to a folder to save logs +PARENT_CONFIG_FILE="" # Path to a folder to save training config logs +PRETRAINED_MODEL_PATH="" # huggingface or local model path +PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path + +declare -a dataset=( + YOUR/DATA/DIR/arrow/part-00000 + YOUR/DATA/DIR/arrow/part-00001 + YOUR/DATA/DIR/arrow/part-00002 + YOUR/DATA/DIR/arrow/part-00003 + YOUR/DATA/DIR/arrow/part-00004 + YOUR/DATA/DIR/arrow/part-00005 + YOUR/DATA/DIR/arrow/part-00006 + YOUR/DATA/DIR/arrow/part-00007 + YOUR/DATA/DIR/arrow/part-00008 + YOUR/DATA/DIR/arrow/part-00009 +) + +TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) +FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" +SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}" +CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json" + +colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 31312 train_dpo.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --checkpoint_path $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --plugin "zero2" \ + --save_interval 1000 \ + --save_dir $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --max_epochs 1 \ + --accumulation_steps 4 \ + --batch_size 2 \ + --lr 1e-6 \ + --mixed_precision "bf16" \ + --grad_clip 1.0 \ + --weight_decay 0.01 \ + --warmup_steps 100 \ + --grad_checkpoint \ + --use_wandb diff --git a/applications/ColossalChat/examples/training_scripts/train_ppo.py b/applications/ColossalChat/examples/training_scripts/train_ppo.py new file mode 100755 index 000000000..7c91fa347 --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_ppo.py @@ -0,0 +1,506 @@ +import argparse +import json +import os +import resource +from contextlib import nullcontext + +import torch +import torch.distributed as dist +from coati.dataset import ( + DataCollatorForPromptDataset, + DataCollatorForSupervisedDataset, + StatefulDistributedSampler, + load_tokenized_dataset, + setup_conversation_template, + setup_distributed_dataloader, +) +from coati.models import Critic, RewardModel, convert_to_lora_module, disable_dropout +from coati.trainer import PPOTrainer +from coati.utils import load_checkpoint +from transformers import AutoModelForCausalLM, AutoTokenizer + +import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin +from colossalai.cluster import DistCoordinator +from colossalai.logging import get_dist_logger +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam + +logger = get_dist_logger() + + +def train(args): + # check lora compatibility + if "gemini" in args.plugin and args.lora_rank > 0: + raise ValueError("LoRA is not supported in GeminiPlugin. Please use other plugin") + if args.plugin == "gemini_auto" and args.accumulation_steps > 1: + raise ValueError("Gradient accumulation is not supported in GeminiPlugin. Please use other plugin") + # ============================== + # Initialize Distributed Training + # ============================== + colossalai.launch_from_torch({}) + coordinator = DistCoordinator() + + # ====================================================== + # Initialize Model, Objective, Optimizer and LR Scheduler + # ====================================================== + # Temp Fix: Disable lazy init due to version conflict + # init_ctx = ( + # LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext() + # ) + + init_ctx = nullcontext() + booster_policy = None + with init_ctx: + if args.use_flash_attn: + actor = AutoModelForCausalLM.from_pretrained( + args.pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + local_files_only=True, + ) + ref_model = AutoModelForCausalLM.from_pretrained( + args.pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + local_files_only=True, + ) + reward_model = RewardModel( + args.rm_pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + ) + critic = Critic( + args.rm_pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + ) + coordinator.print_on_master(msg="Flash-attention enabled successfully") + else: + actor = AutoModelForCausalLM.from_pretrained(args.pretrain, local_files_only=True) + ref_model = AutoModelForCausalLM.from_pretrained(args.pretrain, local_files_only=True) + reward_model = RewardModel(args.rm_pretrain) + critic = Critic(args.rm_pretrain) + # Disable dropout + disable_dropout(actor) + disable_dropout(critic) + + if args.tp > 1: + if reward_model.model.config.architectures[0] != critic.model.config.architectures[0]: + raise ValueError("Reward model and critic model must have the same architecture") + if reward_model.model.config.architectures[0] == "BloomForCausalLM": + from colossalai.shardformer.policies.bloom import BloomPolicy + + booster_policy = BloomPolicy() + elif reward_model.model.config.architectures[0] == "LlamaForCausalLM": + from colossalai.shardformer.policies.llama import LlamaPolicy + + booster_policy = LlamaPolicy() + elif reward_model.model.config.architectures[0] == "GPT2LMHeadModel": + from colossalai.shardformer.policies.gpt2 import GPT2Policy + + booster_policy = GPT2Policy() + elif reward_model.model.config.architectures[0] == "ChatGLMModel": + from colossalai.shardformer.policies.chatglm2 import ChatGLMPolicy + + booster_policy = ChatGLMPolicy() + elif reward_model.model.config.architectures[0] == "OPTForCausalLM": + from colossalai.shardformer.policies.opt import OPTPolicy + + booster_policy = OPTPolicy() + else: + raise ValueError("Unknown model architecture for policy") + + if args.lora_rank > 0: + actor = convert_to_lora_module(actor, args.lora_rank, lora_train_bias=args.lora_train_bias) + critic = convert_to_lora_module(critic, args.lora_rank, lora_train_bias=args.lora_train_bias) + + if args.grad_checkpoint and args.lora_rank == 0: + actor.gradient_checkpointing_enable() + critic.model.gradient_checkpointing_enable() + coordinator.print_on_master(msg="Gradient checkpointing enabled successfully") + elif args.lora_rank > 0: + coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled") + + # configure tokenizer + tokenizer_dir = args.tokenizer_dir if args.tokenizer_dir is not None else args.pretrain + tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=False, trust_remote_code=True) + if os.path.exists(args.conversation_template_config): + with open(args.conversation_template_config, "r", encoding="utf8") as f: + conversation_template_config = json.load(f) + dist.barrier() + conversation_template = setup_conversation_template( + tokenizer, chat_template_config=conversation_template_config, save_path=args.conversation_template_config + ) + stop_ids = conversation_template.stop_ids if len(conversation_template.stop_ids) > 0 else None + else: + raise ValueError("Conversation template config is not provided or incorrect") + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None: + logger.warning( + "The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them." + ) + + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + tokenizer.padding_side = "left" # left padding for generation (online learning) + + # configure generation config + actor.generation_config.update( + pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id + ) + + # configure optimizer + coordinator.print_on_master(f"setting up optimizer for actor: lr={args.lr}, weight_decay={args.weight_decay}") + actor_optim = HybridAdam( + model_params=actor.parameters(), + lr=args.lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + coordinator.print_on_master(f"setting up optimizer for critic: lr={args.lr}, weight_decay={args.weight_decay}") + critic_optim = HybridAdam( + model_params=critic.parameters(), + lr=args.critic_lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + # configure dataset + coordinator.print_on_master(f"Load dataset: {args.prompt_dataset}") + mode_map = {"train": "train", "valid": "validation", "test": "test"} + train_prompt_dataset = load_tokenized_dataset(dataset_paths=args.prompt_dataset, mode="train", mode_map=mode_map) + data_collator = DataCollatorForPromptDataset(tokenizer=tokenizer, max_length=args.max_length - args.max_seq_len) + train_prompt_dataloader = setup_distributed_dataloader( + dataset=train_prompt_dataset, + batch_size=args.experience_batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + + if len(args.ptx_dataset) > 0: + train_ptx_dataset = load_tokenized_dataset(dataset_paths=args.ptx_dataset, mode="train", mode_map=mode_map) + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length) + train_pretrain_dataloader = setup_distributed_dataloader( + dataset=train_ptx_dataset, + batch_size=args.ptx_batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + else: + train_pretrain_dataloader = None + + if args.warmup_steps is None: + args.warmup_steps = int(0.025 * args.num_episodes) + coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}") + + actor_lr_scheduler = CosineAnnealingWarmupLR( + optimizer=actor_optim, + total_steps=args.num_episodes, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + critic_lr_scheduler = CosineAnnealingWarmupLR( + optimizer=critic_optim, + total_steps=args.num_episodes, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + # ============================== + # Initialize Booster + # ============================== + if args.plugin == "ddp": + """ + Default torch ddp plugin without any acceleration, for + debugging purpose acceleration, for debugging purpose + """ + plugin = TorchDDPPlugin(find_unused_parameters=True) + elif args.plugin == "gemini": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="static", + initial_scale=2**16, + max_norm=args.grad_clip, + enable_gradient_accumulation=True, + ) + elif args.plugin == "gemini_auto": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="auto", + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2_cpu": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + cpu_offload=True, + max_norm=args.grad_clip, + ) + elif args.plugin == "3d": + plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + parallel_output=False, + precision=args.mixed_precision, + ) + custom_plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + parallel_output=False, + precision=args.mixed_precision, + custom_policy=booster_policy, + ) + else: + raise ValueError(f"Unknown plugin {args.plugin}") + + if args.plugin != "3d": + custom_plugin = plugin + + actor_booster = Booster(plugin=plugin) + ref_booster = Booster(plugin=plugin) + rm_booster = Booster(plugin=custom_plugin) + critic_booster = Booster(plugin=custom_plugin) + + default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16 + torch.set_default_dtype(default_dtype) + actor, actor_optim, _, train_prompt_dataloader, actor_lr_scheduler = actor_booster.boost( + model=actor, + optimizer=actor_optim, + lr_scheduler=actor_lr_scheduler, + dataloader=train_prompt_dataloader, + ) + + critic, critic_optim, _, _, critic_lr_scheduler = critic_booster.boost( + model=critic, + optimizer=critic_optim, + lr_scheduler=critic_lr_scheduler, + dataloader=train_prompt_dataloader, + ) + reward_model, _, _, _, _ = rm_booster.boost(model=reward_model, dataloader=train_prompt_dataloader) + ref_model, _, _, _, _ = ref_booster.boost(model=ref_model, dataloader=train_prompt_dataloader) + + torch.set_default_dtype(torch.float) + + coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB") + coordinator.print_on_master( + f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + sampler_start_idx = 0 + start_step = 0 + + if args.rm_checkpoint_path is not None: + if "modeling" in args.rm_checkpoint_path: + rm_booster.load_model(reward_model, args.rm_checkpoint_path) + else: + _, _, _ = load_checkpoint( + load_dir=args.rm_checkpoint_path, + booster=rm_booster, + model=reward_model, + optimizer=None, + lr_scheduler=None, + ) + coordinator.print_on_master(f"Loaded reward model checkpoint {args.rm_checkpoint_path}") + + if args.checkpoint_path is not None: + if "modeling" in args.checkpoint_path: + actor_booster.load_model(actor, args.checkpoint_path) + ref_booster.load_model(ref_model, args.checkpoint_path) + coordinator.print_on_master(f"Loaded actor and reference model {args.checkpoint_path}") + else: + _, start_step, sampler_start_idx = load_checkpoint( + load_dir=args.checkpoint_path, + booster=actor_booster, + model=actor, + optimizer=actor_optim, + lr_scheduler=actor_lr_scheduler, + ) + _, _, _ = load_checkpoint( + load_dir=args.checkpoint_path, + booster=ref_booster, + model=ref_model, + optimizer=critic_optim, + lr_scheduler=critic_lr_scheduler, + ) + assert isinstance(train_prompt_dataloader.sampler, StatefulDistributedSampler) + train_prompt_dataloader.sampler.set_start_index(start_index=sampler_start_idx) + + coordinator.print_on_master( + f"Loaded actor and reference model checkpoint {args.checkpoint_path} at spisode {start_step}" + ) + coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}") + + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + if args.critic_checkpoint_path is not None: + if "modeling" in args.critic_checkpoint_path: + critic_booster.load_model(critic, args.critic_checkpoint_path) + else: + _, _, _ = load_checkpoint( + load_dir=args.critic_checkpoint_path, + booster=critic_booster, + model=critic, + optimizer=critic_optim, + lr_scheduler=critic_lr_scheduler, + ) + coordinator.print_on_master(f"Loaded critic checkpoint {args.critic_checkpoint_path}") + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + # configure trainer + trainer = PPOTrainer( + actor_booster, + critic_booster, + actor, + critic, + reward_model, + ref_model, + actor_optim, + critic_optim, + actor_lr_scheduler, + critic_lr_scheduler, + tokenizer=tokenizer, + stop_token_ids=stop_ids, + kl_coef=args.kl_coef, + ptx_coef=args.ptx_coef, + train_batch_size=args.train_batch_size, + buffer_limit=args.num_collect_steps * args.experience_batch_size, + max_length=args.max_length, + max_new_tokens=args.max_seq_len, + use_cache=True, + do_sample=True, + temperature=0.7, + accumulation_steps=args.accumulation_steps, + save_dir=args.save_path, + save_interval=args.save_interval, + top_k=50, + use_tp=args.tp > 1, + offload_inference_models="gemini" not in args.plugin, + coordinator=coordinator, + ) + + trainer.fit( + num_episodes=args.num_episodes, + num_collect_steps=args.num_collect_steps, + num_update_steps=args.num_update_steps, + prompt_dataloader=train_prompt_dataloader, + pretrain_dataloader=train_pretrain_dataloader, + log_dir=args.log_dir, + use_wandb=args.use_wandb, + ) + + if args.lora_rank > 0 and args.merge_lora_weights: + from coati.models.lora import LORA_MANAGER + + # NOTE: set model to eval to merge LoRA weights + LORA_MANAGER.merge_weights = True + actor.eval() + critic.eval() + # save model checkpoint after fitting on only rank0 + coordinator.print_on_master("Start saving final actor model checkpoint") + actor_booster.save_model(actor, os.path.join(trainer.actor_save_dir, "modeling"), shard=True) + coordinator.print_on_master( + f"Saved final actor model checkpoint at episodes {args.num_episodes} at folder {args.save_path}" + ) + coordinator.print_on_master("Start saving final critic model checkpoint") + critic_booster.save_model(critic, os.path.join(trainer.critic_save_dir, "modeling"), shard=True) + coordinator.print_on_master( + f"Saved final critic model checkpoint at episodes {args.num_episodes} at folder {args.save_path}" + ) + coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--prompt_dataset", nargs="+", default=[]) + parser.add_argument("--ptx_dataset", nargs="+", default=[]) + parser.add_argument( + "--plugin", + type=str, + default="gemini", + choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"], + help="Choose which plugin to use", + ) + parser.add_argument( + "--conversation_template_config", + type=str, + default=None, + help="Path \ + to save conversation template config files.", + ) + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value") + parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay") + parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps") + parser.add_argument("--tokenizer_dir", type=str, default=None) + parser.add_argument("--tp", type=int, default=1) + parser.add_argument("--pretrain", type=str, default=None) + parser.add_argument("--rm_pretrain", type=str, default=None) + parser.add_argument("--checkpoint_path", type=str, default=None) + parser.add_argument("--critic_checkpoint_path", type=str, default=None) + parser.add_argument("--rm_checkpoint_path", type=str, help="Reward model checkpoint path") + parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts") + parser.add_argument("--num_episodes", type=int, default=1) + parser.add_argument("--num_collect_steps", type=int, default=2) + parser.add_argument("--num_update_steps", type=int, default=5) + parser.add_argument("--save_interval", type=int, default=1000) + parser.add_argument("--train_batch_size", type=int, default=16) + parser.add_argument("--experience_batch_size", type=int, default=16) + parser.add_argument("--ptx_batch_size", type=int, default=4) + parser.add_argument("--lora_train_bias", type=str, default="none") + parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision") + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") + parser.add_argument("--merge_lora_weights", type=bool, default=True) + parser.add_argument("--lr", type=float, default=9e-6) + parser.add_argument("--critic_lr", type=float, default=9e-6) + parser.add_argument("--kl_coef", type=float, default=0.1) + parser.add_argument("--ptx_coef", type=float, default=0.0) + parser.add_argument("--max_length", type=int, default=2048) + parser.add_argument("--max_seq_len", type=int, default=256) + parser.add_argument("--log_dir", default="logs", type=str) + parser.add_argument("--use_wandb", default=False, action="store_true") + parser.add_argument("--grad_checkpoint", default=False, action="store_true") + parser.add_argument("--use_flash_attn", default=False, action="store_true") + args = parser.parse_args() + train(args) diff --git a/applications/ColossalChat/examples/training_scripts/train_ppo.sh b/applications/ColossalChat/examples/training_scripts/train_ppo.sh new file mode 100755 index 000000000..91633978e --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_ppo.sh @@ -0,0 +1,82 @@ +#!/bin/bash +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} +set_n_least_used_CUDA_VISIBLE_DEVICES 8 + +PROJECT_NAME="ppo" + +PARENT_SAVE_DIR="" # Path to a folder to save checkpoints +PARENT_TENSORBOARD_DIR="" # Path to a folder to save logs +PARENT_CONFIG_FILE="" # Path to a folder to save training config logs +PRETRAINED_MODEL_PATH="" # local pretrained model path (from RLHF step 1: SFT) +PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path +REWARD_MODEL_PATH="" # local reward model path (from RLHF step 2: Train Reward Model) +CONVERSATION_TEMPLATE_CONFIG_PATH="" # path to the conversation config file + +declare -a prompt_dataset=( + YOUR/PROMPT/DATA/DIR/arrow/part-00000 + YOUR/PROMPT/DATA/DIR/arrow/part-00001 + YOUR/PROMPT/DATA/DIR/arrow/part-00002 + YOUR/PROMPT/DATA/DIR/arrow/part-00003 + YOUR/PROMPT/DATA/DIR/arrow/part-00004 + YOUR/PROMPT/DATA/DIR/arrow/part-00005 + YOUR/PROMPT/DATA/DIR/arrow/part-00006 + YOUR/PROMPT/DATA/DIR/arrow/part-00007 + YOUR/PROMPT/DATA/DIR/arrow/part-00008 + YOUR/PROMPT/DATA/DIR/arrow/part-00009 +) + +declare -a ptx_dataset=( + YOUR/SFT/DATA/DIR/arrow/part-00000 + YOUR/SFT/DATA/DIR/arrow/part-00001 + YOUR/SFT/DATA/DIR/arrow/part-00002 + YOUR/SFT/DATA/DIR/arrow/part-00003 + YOUR/SFT/DATA/DIR/arrow/part-00004 + YOUR/SFT/DATA/DIR/arrow/part-00005 + YOUR/SFT/DATA/DIR/arrow/part-00006 + YOUR/SFT/DATA/DIR/arrow/part-00007 + YOUR/SFT/DATA/DIR/arrow/part-00008 + YOUR/SFT/DATA/DIR/arrow/part-00009 +) + +TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) +FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" +SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}" +CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json" + +colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 31312 train_ppo.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --rm_pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --rm_checkpoint_path $REWARD_MODEL_PATH \ + --prompt_dataset ${prompt_dataset[@]} \ + --conversation_template_config $CONVERSATION_TEMPLATE_CONFIG_PATH \ + --ptx_coef 0.0 \ + --plugin "zero2" \ + --save_interval 500 \ + --save_path $SAVE_DIR \ + --num_episodes 2000 \ + --num_collect_steps 2 \ + --num_update_steps 1 \ + --experience_batch_size 4 \ + --train_batch_size 4 \ + --accumulation_steps 2 \ + --lr 9e-6 \ + --mixed_precision "bf16" \ + --grad_clip 0.1\ + --weight_decay 0.01 \ + --warmup_steps 40 \ + --grad_checkpoint \ + --use_wandb diff --git a/applications/ColossalChat/examples/training_scripts/train_rm.py b/applications/ColossalChat/examples/training_scripts/train_rm.py new file mode 100755 index 000000000..a0c710f2b --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_rm.py @@ -0,0 +1,342 @@ +import argparse +import json +import math +import os +import resource +from contextlib import nullcontext + +import torch +from coati.dataset import ( + DataCollatorForPreferenceDataset, + StatefulDistributedSampler, + load_tokenized_dataset, + setup_distributed_dataloader, +) +from coati.models import LogExpLoss, LogSigLoss, RewardModel, convert_to_lora_module +from coati.trainer import RewardModelTrainer +from coati.utils import load_checkpoint +from transformers import AutoTokenizer + +import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin +from colossalai.cluster import DistCoordinator +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam + + +def train(args): + # check lora compatibility + if "gemini" in args.plugin and args.lora_rank > 0: + raise ValueError("LoRA is not supported in GeminiPlugin. Please use other plugin") + if args.plugin == "gemini_auto" and args.accumulation_steps > 1: + raise ValueError("Gradient accumulation is not supported in GeminiPlugin. Please use other plugin") + # ============================== + # Initialize Distributed Training + # ============================== + colossalai.launch_from_torch({}) + coordinator = DistCoordinator() + + # ====================================================== + # Initialize Model, Objective, Optimizer and LR Scheduler + # ====================================================== + # Temp Fix: Disable lazy init due to version conflict + # init_ctx = ( + # LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext() + # ) + + init_ctx = nullcontext() + booster_policy = None + with init_ctx: + if args.use_flash_attn: + model = RewardModel( + args.pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + ) + coordinator.print_on_master(msg="Flash-attention enabled successfully") + else: + model = RewardModel(args.pretrain) + + if args.tp > 1: + if model.model.config.architectures[0] == "BloomForCausalLM": + from colossalai.shardformer.policies.bloom import BloomPolicy + + booster_policy = BloomPolicy() + elif model.model.config.architectures[0] == "LlamaForCausalLM": + from colossalai.shardformer.policies.llama import LlamaPolicy + + booster_policy = LlamaPolicy() + elif model.model.config.architectures[0] == "GPT2LMHeadModel": + from colossalai.shardformer.policies.gpt2 import GPT2Policy + + booster_policy = GPT2Policy() + elif model.model.config.architectures[0] == "ChatGLMModel": + from colossalai.shardformer.policies.chatglm2 import ChatGLMPolicy + + booster_policy = ChatGLMPolicy() + elif model.model.config.architectures[0] == "OPTForCausalLM": + from colossalai.shardformer.policies.opt import OPTPolicy + + booster_policy = OPTPolicy() + else: + raise ValueError("Unknown model architecture for policy") + + if args.lora_rank > 0: + model = convert_to_lora_module(model, args.lora_rank, lora_train_bias=args.lora_train_bias) + + # ============================== + # Initialize Booster + # ============================== + if args.plugin == "ddp": + """ + Default torch ddp plugin without any acceleration, for + debugging purpose acceleration, for debugging purpose + """ + plugin = TorchDDPPlugin(find_unused_parameters=True) + elif args.plugin == "gemini": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="static", + initial_scale=2**16, + max_norm=args.grad_clip, + enable_gradient_accumulation=True, + ) + elif args.plugin == "gemini_auto": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="auto", + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2_cpu": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + cpu_offload=True, + max_norm=args.grad_clip, + ) + elif args.plugin == "3d": + plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + parallel_output=False, + precision=args.mixed_precision, + custom_policy=booster_policy, + ) + else: + raise ValueError(f"Unknown plugin {args.plugin}") + + booster = Booster(plugin=plugin) + + if args.grad_checkpoint and args.lora_rank == 0: + model.model.gradient_checkpointing_enable() # TODO: support gradient checkpoint for the last linear layer + coordinator.print_on_master(msg="Gradient checkpointing enabled successfully") + elif args.lora_rank > 0: + coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled") + + # configure tokenizer + tokenizer_dir = args.tokenizer_dir if args.tokenizer_dir is not None else args.pretrain + tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=False, trust_remote_code=True) + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None: + logger.warning( + "The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them." + ) + tokenizer.padding_side = "right" + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + + # configure loss function + if args.loss_fn == "log_sig": + loss_fn = LogSigLoss() + elif args.loss_fn == "log_exp": + loss_fn = LogExpLoss() + else: + raise ValueError(f'Unsupported loss function "{args.loss_fn}"') + + # configure optimizer + optim = HybridAdam( + model_params=model.parameters(), + lr=args.lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + # configure dataset + coordinator.print_on_master(f"Load dataset: {args.dataset}") + mode_map = {"train": "train", "valid": "validation", "test": "test"} + train_dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train", mode_map=mode_map) + data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length) + train_dataloader = setup_distributed_dataloader( + dataset=train_dataset, + batch_size=args.batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + + num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps + math.ceil(args.max_epochs * num_update_steps_per_epoch) + + if args.warmup_steps is None: + args.warmup_steps = int(args.max_epochs * 0.025 * (len(train_dataloader) // args.accumulation_steps)) + coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}") + + lr_scheduler = CosineAnnealingWarmupLR( + optimizer=optim, + total_steps=args.max_epochs * num_update_steps_per_epoch, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16 + torch.set_default_dtype(default_dtype) + model, optim, _, train_dataloader, lr_scheduler = booster.boost( + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + dataloader=train_dataloader, + ) + torch.set_default_dtype(torch.float) + + coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB") + coordinator.print_on_master( + f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + start_epoch = 0 + sampler_start_idx = 0 + start_step = 0 + if args.checkpoint_path is not None: + if "modeling" in args.checkpoint_path: + coordinator.print_on_master(f"Continued pretrain from checkpoint {args.checkpoint_path}") + booster.load_model(model, args.checkpoint_path) + else: + coordinator.print_on_master(f"Load model checkpoint from {args.checkpoint_path}") + start_epoch, start_step, sampler_start_idx = load_checkpoint( + load_dir=args.checkpoint_path, + booster=booster, + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + ) + assert isinstance(train_dataloader.sampler, StatefulDistributedSampler) + train_dataloader.sampler.set_start_index(start_index=sampler_start_idx) + + coordinator.print_on_master( + f"Loaded checkpoint {args.checkpoint_path} at epoch {start_epoch} step {start_step}" + ) + coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}") + + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + trainer = RewardModelTrainer( + model, + booster, + optim, + lr_scheduler, + tokenizer, + loss_fn=loss_fn, + max_epochs=args.max_epochs, + accumulation_steps=args.accumulation_steps, + start_epoch=start_epoch, + save_interval=args.save_interval, + save_dir=args.save_dir, + coordinator=coordinator, + ) + + trainer.fit( + train_preference_dataloader=train_dataloader, + eval_preference_dataloader=None, + log_dir=args.log_dir, + use_wandb=args.use_wandb, + ) + + if args.lora_rank > 0 and args.merge_lora_weights: + from coati.models.lora import LORA_MANAGER + + # NOTE: set model to eval to merge LoRA weights + LORA_MANAGER.merge_weights = True + model.eval() + # save model checkpoint after fitting on only rank0 + coordinator.print_on_master("Start saving final model checkpoint") + booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True) + coordinator.print_on_master(f"Saved final model checkpoint at epoch {args.max_epochs} at folder {args.save_dir}") + + coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB") + + +if __name__ == "__main__": + # ============================== + # Parse Arguments + # ============================== + parser = argparse.ArgumentParser() + parser.add_argument( + "--plugin", + type=str, + default="gemini", + choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d", "ddp"], + help="Choose which plugin to use", + ) + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value") + parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay") + parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps") + parser.add_argument("--tp", type=int, default=1) + parser.add_argument("--pretrain", type=str, default=None) + parser.add_argument("--tokenizer_dir", type=str, default=None) + parser.add_argument("--dataset", nargs="+", default=[]) + parser.add_argument( + "--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint" + ) + parser.add_argument("--config_file", type=str, default="config_file", help="Config file") + parser.add_argument("--save_dir", type=str, default="output") + parser.add_argument("--max_length", type=int, default=2048, help="Model max length") + parser.add_argument("--max_epochs", type=int, default=3) + parser.add_argument("--batch_size", type=int, default=4) + parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision") + parser.add_argument("--loss_fn", type=str, default="log_sig", choices=["log_sig", "log_exp"], help="Loss function") + parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") + parser.add_argument( + "--lora_train_bias", + type=str, + default="none", + help="'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers", + ) + parser.add_argument("--save_interval", type=int, default=1000, help="number of step between two checkpoints") + parser.add_argument("--merge_lora_weights", type=bool, default=True) + parser.add_argument("--lr", type=float, default=5e-6) + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--log_dir", default="logs", type=str) + parser.add_argument("--use_wandb", default=False, action="store_true") + parser.add_argument("--grad_checkpoint", default=False, action="store_true") + parser.add_argument("--use_flash_attn", default=False, action="store_true") + args = parser.parse_args() + os.makedirs(os.path.dirname(args.config_file), exist_ok=True) + with open(args.config_file, "w") as f: + json.dump(args.__dict__, f, indent=4) + train(args) diff --git a/applications/ColossalChat/examples/training_scripts/train_rm.sh b/applications/ColossalChat/examples/training_scripts/train_rm.sh new file mode 100755 index 000000000..e06d9092f --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_rm.sh @@ -0,0 +1,61 @@ +#!/bin/bash +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} +set_n_least_used_CUDA_VISIBLE_DEVICES 8 + +PROJECT_NAME="rm" +PARENT_SAVE_DIR="" # Path to a folder to save checkpoints +PARENT_TENSORBOARD_DIR="" # Path to a folder to save logs +PARENT_CONFIG_FILE="" # Path to a folder to save training config logs +PRETRAINED_MODEL_PATH="" # huggingface or local model path +PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path + +declare -a dataset=( + YOUR/PREFERENCE/DATA/DIR/arrow/part-00000 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00001 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00002 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00003 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00004 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00005 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00006 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00007 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00008 + YOUR/PREFERENCE/DATA/DIR/arrow/part-00009 +) + +TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) +FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" +SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}" +CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json" + +colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 31312 train_rm.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --checkpoint_path /home/yeanbang/data/experiments/rm/hhh_aligh/ckptllama2-rm-2024-01-17-14-43-24/epoch-1_step-1317/modeling \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --dataset ${dataset[@]} \ + --plugin "zero2" \ + --save_interval 1000 \ + --save_dir $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --max_epochs 3 \ + --accumulation_steps 1 \ + --batch_size 8 \ + --lr 5e-6 \ + --mixed_precision "bf16" \ + --grad_clip 1.0 \ + --weight_decay 0.01 \ + --warmup_steps 40 \ + --grad_checkpoint \ + --use_wandb diff --git a/applications/ColossalChat/examples/training_scripts/train_sft.py b/applications/ColossalChat/examples/training_scripts/train_sft.py new file mode 100755 index 000000000..fcd1a429c --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_sft.py @@ -0,0 +1,311 @@ +import argparse +import json +import math +import os +import resource +from contextlib import nullcontext + +import torch +from coati.dataset import DataCollatorForSupervisedDataset, load_tokenized_dataset, setup_distributed_dataloader +from coati.models import convert_to_lora_module +from coati.trainer import SFTTrainer +from coati.utils import load_checkpoint +from transformers import AutoModelForCausalLM, AutoTokenizer + +import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin +from colossalai.cluster import DistCoordinator +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam + + +def train(args): + # check lora compatibility + if "gemini" in args.plugin and args.lora_rank > 0: + raise ValueError("LoRA is not supported in GeminiPlugin. Please use other plugin") + if args.plugin == "gemini_auto" and args.accumulation_steps > 1: + raise ValueError("Gradient accumulation is not supported in GeminiPlugin. Please use other plugin") + # ============================== + # Initialize Distributed Training + # ============================== + colossalai.launch_from_torch({}) + coordinator = DistCoordinator() + + # ============================== + # Initialize Booster + # ============================== + if args.plugin == "ddp": + """ + Default torch ddp plugin without any acceleration, for + debugging purpose acceleration, for debugging purpose + """ + plugin = TorchDDPPlugin(find_unused_parameters=True) + elif args.plugin == "gemini": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="static", + initial_scale=2**16, + max_norm=args.grad_clip, + enable_gradient_accumulation=True, + ) + elif args.plugin == "gemini_auto": + plugin = GeminiPlugin( + precision=args.mixed_precision, + placement_policy="auto", + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + max_norm=args.grad_clip, + ) + elif args.plugin == "zero2_cpu": + plugin = LowLevelZeroPlugin( + stage=2, + precision=args.mixed_precision, + initial_scale=2**16, + cpu_offload=True, + max_norm=args.grad_clip, + ) + elif args.plugin == "3d": + plugin = HybridParallelPlugin( + tp_size=args.tp, + pp_size=1, + zero_stage=0, + parallel_output=False, + max_norm=args.grad_clip, + precision=args.mixed_precision, + ) + else: + raise ValueError(f"Unknown plugin {args.plugin}") + + booster = Booster(plugin=plugin) + + # ====================================================== + # Initialize Model, Objective, Optimizer and LR Scheduler + # ====================================================== + # Temp Fix: Disable lazy init due to version conflict + # init_ctx = ( + # LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext() + # ) + + init_ctx = nullcontext() + with init_ctx: + if args.use_flash_attn: + model = AutoModelForCausalLM.from_pretrained( + args.pretrain, + torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, + use_flash_attention_2=True, + ) + coordinator.print_on_master(msg="Flash-attention enabled successfully") + else: + model = AutoModelForCausalLM.from_pretrained(args.pretrain) + if args.lora_rank > 0: + model = convert_to_lora_module(model, args.lora_rank, lora_train_bias=args.lora_train_bias) + + if args.grad_checkpoint and args.lora_rank == 0: + # lora layers are not supported by gradient checkpointing + model.gradient_checkpointing_enable() + coordinator.print_on_master(msg="Gradient checkpointing enabled successfully") + elif args.lora_rank > 0: + coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled") + + # configure tokenizer + tokenizer = AutoTokenizer.from_pretrained( + args.tokenizer_dir or args.pretrain, use_fast=False, trust_remote_code=True + ) + if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None: + try: + # Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen + tokenizer.pad_token = tokenizer.eos_token + except AttributeError as e: + logger.warning(f"Unable to set pad token to eos token, {str(e)}") + if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None: + logger.warning( + "The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them." + ) + + tokenizer.add_bos_token = False + tokenizer.add_eos_token = False + + coordinator.print_on_master(f"Configuration file will be saved at: {args.config_file}") + coordinator.print_on_master(f"Model checkpoint will be saved at: {args.save_path}") + + # configure optimizer + optim = HybridAdam( + model_params=model.parameters(), + lr=args.lr, + betas=(0.9, 0.95), + weight_decay=args.weight_decay, + adamw_mode=True, + ) + + # configure dataset + coordinator.print_on_master( + f"Max CUDA memory before data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train") + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_len) + train_dataloader = setup_distributed_dataloader( + dataset=dataset, + batch_size=args.batch_size, + shuffle=True, + drop_last=True, + collate_fn=data_collator, + use_tp=args.tp > 1, + ) + coordinator.print_on_master( + f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + + num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps + math.ceil(args.max_epochs * num_update_steps_per_epoch) + + if args.warmup_steps is None: + args.warmup_steps = int(args.max_epochs * 0.025 * (len(train_dataloader) // args.accumulation_steps)) + coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}") + + lr_scheduler = CosineAnnealingWarmupLR( + optimizer=optim, + total_steps=args.max_epochs * num_update_steps_per_epoch, + warmup_steps=args.warmup_steps, + eta_min=0.1 * args.lr, + ) + + # Flash attention will be disabled because it does NOT support fp32. + default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16 + torch.set_default_dtype(default_dtype) + model, optim, _, train_dataloader, lr_scheduler = booster.boost( + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + dataloader=train_dataloader, + ) + # model = model.to(get_current_device()) + torch.set_default_dtype(torch.float) + + coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB") + coordinator.print_on_master( + f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + start_epoch = 0 + sampler_start_idx = 0 + start_step = 0 + if args.checkpoint_path is not None: + if "modeling" in args.checkpoint_path: + coordinator.print_on_master(f"Continued pretrain from checkpoint {args.checkpoint_path}") + booster.load_model(model, args.checkpoint_path) + else: + coordinator.print_on_master(f"Load model checkpoint from {args.checkpoint_path}") + start_epoch, start_step, sampler_start_idx = load_checkpoint( + load_dir=args.checkpoint_path, + booster=booster, + model=model, + optimizer=optim, + lr_scheduler=lr_scheduler, + ) + train_dataloader.sampler.set_start_index(start_index=sampler_start_idx) + + coordinator.print_on_master( + f"Loaded checkpoint {args.checkpoint_path} at epoch {start_epoch} step {start_step}" + ) + coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}") + + coordinator.print_on_master( + f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB" + ) + coordinator.print_on_master( + f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB" + ) + + trainer = SFTTrainer( + model=model, + booster=booster, + optim=optim, + lr_scheduler=lr_scheduler, + max_epochs=args.max_epochs, + accumulation_steps=args.accumulation_steps, + start_epoch=start_epoch, + save_interval=args.save_interval, + save_dir=args.save_path, + coordinator=coordinator, + ) + + trainer.fit( + train_dataloader=train_dataloader, + eval_dataloader=None, + log_dir=args.log_dir, + use_wandb=args.use_wandb, + ) + + if args.lora_rank > 0 and args.merge_lora_weights: + from coati.models.lora import LORA_MANAGER + + # NOTE: set model to eval to merge LoRA weights + LORA_MANAGER.merge_weights = True + model.eval() + # save model checkpoint after fitting on only rank0 + coordinator.print_on_master("Start saving final model checkpoint") + + booster.save_model(model, os.path.join(args.save_path, "modeling"), shard=True) + coordinator.print_on_master(f"Saved final model checkpoint at epoch {args.max_epochs} at folder {args.save_path}") + + coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB") + + +if __name__ == "__main__": + # ============================== + # Parse Arguments + # ============================== + parser = argparse.ArgumentParser() + parser.add_argument( + "--plugin", + type=str, + default="gemini", + choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d", "ddp"], + help="Choose which plugin to use", + ) + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value") + parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay") + parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps") + parser.add_argument("--tp", type=int, default=1) + parser.add_argument("--pretrain", type=str, default=None) + parser.add_argument("--tokenizer_dir", type=str, default=None) + parser.add_argument("--dataset", nargs="+", default=[]) + parser.add_argument( + "--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint" + ) + parser.add_argument("--save_path", type=str, default="output") + parser.add_argument("--max_epochs", type=int, default=3) + parser.add_argument("--batch_size", type=int, default=4) + parser.add_argument("--max_len", type=int, default=512) + parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision") + parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank") + parser.add_argument( + "--lora_train_bias", + type=str, + default="none", + help="'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers", + ) + parser.add_argument("--save_interval", type=int, default=1000, help="number of step between two checkpoints") + parser.add_argument("--merge_lora_weights", type=bool, default=True) + parser.add_argument("--lr", type=float, default=5e-6) + parser.add_argument("--config_file", type=str, default="config_file", help="Config file") + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--log_dir", default="logs", type=str) + parser.add_argument("--use_wandb", default=False, action="store_true") + parser.add_argument("--grad_checkpoint", default=False, action="store_true") + parser.add_argument("--use_flash_attn", default=False, action="store_true") + args = parser.parse_args() + os.makedirs(os.path.dirname(args.config_file), exist_ok=True) + with open(args.config_file, "w") as f: + json.dump(args.__dict__, f, indent=4) + train(args) diff --git a/applications/ColossalChat/examples/training_scripts/train_sft.sh b/applications/ColossalChat/examples/training_scripts/train_sft.sh new file mode 100755 index 000000000..d5c394377 --- /dev/null +++ b/applications/ColossalChat/examples/training_scripts/train_sft.sh @@ -0,0 +1,59 @@ +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} + + +# export CUDA_VISIBLE_DEVICES=4,5,6 +set_n_least_used_CUDA_VISIBLE_DEVICES 4 +PROJECT_NAME="sft" +PARENT_SAVE_DIR="" # Path to a folder to save checkpoints +PARENT_TENSORBOARD_DIR="" # Path to a folder to save logs +PARENT_CONFIG_FILE="" # Path to a folder to save training config logs +PRETRAINED_MODEL_PATH="" # huggingface or local model path +PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path +declare -a dataset=( + YOUR/SFT/DATA/DIR/arrow/part-00000 + YOUR/SFT/DATA/DIR/arrow/part-00001 + YOUR/SFT/DATA/DIR/arrow/part-00002 + YOUR/SFT/DATA/DIR/arrow/part-00003 + YOUR/SFT/DATA/DIR/arrow/part-00004 + YOUR/SFT/DATA/DIR/arrow/part-00005 + YOUR/SFT/DATA/DIR/arrow/part-00006 + YOUR/SFT/DATA/DIR/arrow/part-00007 + YOUR/SFT/DATA/DIR/arrow/part-00008 + YOUR/SFT/DATA/DIR/arrow/part-00009 +) + +TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) +FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" +SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}" +CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json" + +# the real batch size for gradient descent is number_of_node_in_hostfile * nproc_per_node * train_batch_size +colossalai run --nproc_per_node 4 --master_port 31312 --hostfile ./hostfile train_sft.py \ + --pretrain $PRETRAINED_MODEL_PATH \ + --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ + --save_interval 4000 \ + --dataset ${dataset[@]} \ + --save_path $SAVE_DIR \ + --config_file $CONFIG_FILE \ + --lora_rank 0 \ + --plugin zero2 \ + --batch_size 8 \ + --max_epochs 1 \ + --accumulation_steps 1 \ + --lr 2e-5 \ + --max_len 2048 \ + --grad_checkpoint \ + --use_wandb diff --git a/applications/Chat/pytest.ini b/applications/ColossalChat/pytest.ini old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/pytest.ini rename to applications/ColossalChat/pytest.ini diff --git a/applications/ColossalChat/requirements.txt b/applications/ColossalChat/requirements.txt new file mode 100755 index 000000000..de5f6160e --- /dev/null +++ b/applications/ColossalChat/requirements.txt @@ -0,0 +1,24 @@ +transformers==4.34.1 +huggingface_hub==0.17.3 +tqdm +datasets +loralib +colossalai>=0.3.6 +torch>=1.12.1 +langchain +tokenizers +fastapi +sse_starlette +wandb +sentencepiece +gpustat +packaging +autoflake==2.2.1 +black==23.9.1 +tensorboard +six==1.16.0 +datasets +ninja==1.11.1 +sentencepiece==0.1.99 +flash-attn +tiktoken diff --git a/applications/Chat/setup.py b/applications/ColossalChat/setup.py old mode 100644 new mode 100755 similarity index 97% rename from applications/Chat/setup.py rename to applications/ColossalChat/setup.py index eb44b6203..37503920a --- a/applications/Chat/setup.py +++ b/applications/ColossalChat/setup.py @@ -32,7 +32,7 @@ setup( license="Apache Software License 2.0", url="https://github.com/hpcaitech/Coati", install_requires=fetch_requirements("requirements.txt"), - python_requires=">=3.6", + python_requires=">=3.7", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", diff --git a/applications/Chat/tests/__init__.py b/applications/ColossalChat/tests/__init__.py old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/tests/__init__.py rename to applications/ColossalChat/tests/__init__.py diff --git a/applications/ColossalChat/tests/generate_dummy_datasets_for_testing.py b/applications/ColossalChat/tests/generate_dummy_datasets_for_testing.py new file mode 100644 index 000000000..9f85b4beb --- /dev/null +++ b/applications/ColossalChat/tests/generate_dummy_datasets_for_testing.py @@ -0,0 +1,72 @@ +import argparse +import json +import os + +sft_seed = { + "messages": [ + {"from": "human", "content": "Give three tips for staying healthy."}, + { + "from": "assistant", + "content": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule.", + }, + ] +} +prompt_seed = { + "messages": [ + {"from": "human", "content": "Describe the impacts of climate change on communities living in coastal areas."}, + { + "from": "assistant", + "content": "Climate change has caused an increase in sea levels, which has caused coastal erosion and flooding of low-lying areas. This has led to displacement of people from their homes, as well as increased risk of epidemics of waterborne illnesses. Coastal cities have also seen an increase in extreme weather events such as hurricanes and tropical storms, which can cause extensive damage to infrastructure, homes, and businesses. As a result of climate change, some coastal areas are becoming uninhabitable, forcing communities to seek alternative living arrangements.", + }, + ] +} +preference_seed = { + "context": [ + {"from": "human", "content": "What kind of noises did dinosaurs make?"}, + { + "from": "assistant", + "content": "Humans and dinosaurs didn't live at the same time, so it's really hard to say. The best place to find out what noises dinosaurs made would be", + }, + {"from": "human", "content": "yes they did"}, + { + "from": "assistant", + "content": "to guess, and that would probably require lots of reading and a certain amount of imagination, so we're not really prepared to do that.", + }, + {"from": "human", "content": "you cant read"}, + ], + "chosen": [{"from": "assistant", "content": "You can read?"}], + "rejected": [{"from": "assistant", "content": "there's a lot of stuff humans don't know"}], +} + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--data_dir", + type=str, + required=True, + default=None, + help="The output dir", + ) + parser.add_argument( + "--data_type", + type=str, + required=True, + default=None, + help="The type of data", + ) + args = parser.parse_args() + if args.data_type == "sft": + seed = sft_seed + elif args.data_type == "prompt": + seed = prompt_seed + elif args.data_type == "preference": + seed = preference_seed + else: + raise ValueError(f"Unknown data type {args.data_type}") + + line = json.dumps(seed, ensure_ascii=False) + "\n" + for idx in [1, 2, 3]: + with open(os.path.join(args.data_dir, f"{idx}.jsonl"), "w", encoding="utf8") as f: + for i in range(1000): + f.write(line) + f.write(line) diff --git a/applications/ColossalChat/tests/llama.json b/applications/ColossalChat/tests/llama.json new file mode 100644 index 000000000..482ff9e65 --- /dev/null +++ b/applications/ColossalChat/tests/llama.json @@ -0,0 +1,8 @@ +{ + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}{{'Human: ' + bos_token + message['content'].strip() + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'].strip() + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + bos_token + message['content'].strip() + eos_token }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant: ' + bos_token }}{% endif %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "stop_ids": [ + 29871, + 2 + ] +} diff --git a/applications/ColossalChat/tests/opt.json b/applications/ColossalChat/tests/opt.json new file mode 100644 index 000000000..6d47666bb --- /dev/null +++ b/applications/ColossalChat/tests/opt.json @@ -0,0 +1,17 @@ +{ + "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'Human: ' + bos_token + message['content'].strip() + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'].strip() + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + bos_token + message['content'].strip() + eos_token }}{% endif %}{% endfor %}", + "system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", + "human_line_start": [ + 2 + ], + "human_line_end": [ + 2 + ], + "assistant_line_start": [ + 2 + ], + "assistant_line_end": [ + 2 + ], + "end_of_system_line_position": 0 +} diff --git a/applications/ColossalChat/tests/test_data/dpo/test_dpo_data.jsonl b/applications/ColossalChat/tests/test_data/dpo/test_dpo_data.jsonl new file mode 100644 index 000000000..2e11a91c6 --- /dev/null +++ b/applications/ColossalChat/tests/test_data/dpo/test_dpo_data.jsonl @@ -0,0 +1 @@ +{"context": [{"from": "human", "content": "If I were to give you some coordinates, could you tell me where the location is?"}], "chosen": [{"from": "assistant", "content": "Certainly! I can tell you if the given coordinates are within any geographic location, such as a country or city. However, I cannot give accurate directions to any specific location without more information. Are you looking for a more general geographic location, or do you want more precise directions?"}], "rejected": [{"from": "assistant", "content": "Yes, I can determine the location and give you some details about the area. Please provide the latitude and longitude coordinates, and I will return a description of the location based on these coordinates. Please note that precise geographical coordinates are often imprecise, so please provide the best possible coordinates you have available. Here are some examples:\n-The coordinates 41.543554,-71.09471 locate the Boston Commons in Boston, Massachusetts\n-The coordinates 37.42242, -122.083733 locate the Palace of Fine Arts in San Francisco, California \n-The coordinates 25.774145, -80.190262 locate Canal Street in Miami Beach, Florida\n-The coordinates 35. journalisten nl 48.056944, -106.277778 locate the Wyoming State Penitentiary in Rawlins, Wyoming\n-The coordinates 51.507351,-0.127758 locate Tower Bridge in London, England\n-The coordinates 44.885618, -79.422594 locate the Stratosphere Casino, Hotel and Tower in Las Vegas, Nevada"}]} diff --git a/applications/ColossalChat/tests/test_data/sft/test_sft_data.jsonl b/applications/ColossalChat/tests/test_data/sft/test_sft_data.jsonl new file mode 100644 index 000000000..21c4d9dc7 --- /dev/null +++ b/applications/ColossalChat/tests/test_data/sft/test_sft_data.jsonl @@ -0,0 +1 @@ +{"messages": [{"from": "human", "content": "what are some pranks with a pen I can do?"}, {"from": "assistant", "content": "Are you looking for practical joke ideas?"}, {"from": "human", "content": "Yes, exactly!"}, {"from": "assistant", "content": "You could try attaching a small buzzer to a pen. When someone tries to use it, they'll be surprised by the sound!"}, {"from": "human", "content": "That's a funny one! Any other ideas?"}, {"from": "assistant", "content": "Another idea is the classic 'ink explosion' prank. Replace the ink of a pen with disappearing ink, and watch the confusion when the ink vanishes from the paper."}]} diff --git a/applications/ColossalChat/tests/test_data_preparation.sh b/applications/ColossalChat/tests/test_data_preparation.sh new file mode 100755 index 000000000..a7689cdc6 --- /dev/null +++ b/applications/ColossalChat/tests/test_data_preparation.sh @@ -0,0 +1,260 @@ +#!/usr/bin/env bash +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} + +set_n_least_used_CUDA_VISIBLE_DEVICES 4 + +set -xu + +if [ -z "$SFT_DATASET" ]; then + echo "Please set \$SFT_DATASET to the path to sft dataset." + exit 1 +fi + +if [ -z "$PROMPT_DATASET" ]; then + echo "Please set \$PROMPT_DATASET to the path to prompts." + exit 1 +fi + +if [ -z "$PREFERENCE_DATASET" ]; then + echo "Please set \$SFT_DATASET to the path to sft dataset." + exit 1 +fi + +NUM_RETRY=3 +BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) +BASE_TEMP_DIR=$BASE_DIR/temp +TEST_DIR=$BASE_DIR/tests +EXAMPLES_DIR=$BASE_DIR/examples +DATA_SAVE_PATH=$BASE_TEMP_DIR/rlhf_data +CONFIG_DIR=$BASE_DIR/config +# Skip those tests due to CI tests timeout +MODELS=('llama') + +if [ ! -d "$BASE_TEMP_DIR" ]; then + mkdir "$BASE_TEMP_DIR" + echo "Directory created successfully" +else + echo "Directory already exists" +fi + +if [ ! -d "$DATA_SAVE_PATH" ]; then + mkdir "$DATA_SAVE_PATH" + echo "Directory created successfully" +else + echo "Directory already exists" +fi + + +export OMP_NUM_THREADS=8 + +# install requirements +pip install -r $EXAMPLES_DIR/requirements.txt + +get_data_input_dirs() { + local data_type=$1 + if [[ $data_type == "sft" ]]; then + echo "$SFT_DATASET" + elif [[ $data_type == "prompt" ]]; then + echo "$PROMPT_DATASET" + elif [[ $data_type == "preference" ]]; then + echo "$PREFERENCE_DATASET" + else + echo "Unknown data type $data_type" + exit 1 + fi +} + +get_conversation_template_config() { + local model=$1 + if [[ $model == "llama" ]]; then + echo "$TEST_DIR/llama.json" + elif [[ $model == "opt" ]]; then + echo "$TEST_DIR/opt.json" + else + echo "Unknown model $model" + exit 1 + fi +} + +get_tokenizer_dirs() { + local model=$1 + if [[ $model == "llama" ]]; then + echo "hf-internal-testing/llama-tokenizer" + elif [[ $model == "opt" ]]; then + echo "facebook/opt-125m" + else + echo "Unknown model $model" + exit 1 + fi +} + +random_choice() { + local arr=("$@") + local len=${#arr[@]} + local idx=$((RANDOM % len)) + echo ${arr[$idx]} +} + +echo "Prepare dummy data for testing..." +python $TEST_DIR/generate_dummy_datasets_for_testing.py \ + --data_dir $(get_data_input_dirs sft) \ + --data_type "sft" + +python $TEST_DIR/generate_dummy_datasets_for_testing.py \ + --data_dir $(get_data_input_dirs preference) \ + --data_type "preference" + +python $TEST_DIR/generate_dummy_datasets_for_testing.py \ + --data_dir $(get_data_input_dirs prompt) \ + --data_type "prompt" + +echo "[Test]: testing prepare_preference_dataset.py ..." + +# FIXME: This is a hack to skip tests that are not working +SKIPPED_TESTS=( +) + +# test prepare_preference_dataset +for model in ${MODELS[@]}; do + data_type="preference" + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$data_type " ]]; then + echo "[Test]: Skipped $model-$data_type" + continue + fi + cache_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/cache + jsonl_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/jsonl + arrow_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/arrow + rm -rf $cache_dir + rm -rf $jsonl_dir + rm -rf $arrow_dir + data_input_dirs=$(get_data_input_dirs $data_type) + tokenizer_dir=$(get_tokenizer_dirs $model) + conversation_template=$(get_conversation_template_config $model) + for i in $(seq $NUM_RETRY); do + echo "[Test]: $model-$data_type, attempt $i" + python $EXAMPLES_DIR/data_preparation_scripts/prepare_dataset.py \ + --type preference \ + --data_input_dirs $data_input_dirs \ + --conversation_template_config $conversation_template \ + --tokenizer_dir $tokenizer_dir \ + --data_cache_dir $cache_dir \ + --data_jsonl_output_dir $jsonl_dir \ + --data_arrow_output_dir $arrow_dir \ + --max_length 400 \ + --num_samples_per_datafile 100 \ + --num_spliced_dataset_bins 1 + passed=$? + if [ $passed -eq 0 ]; then + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$data_type" + exit 1 + fi +done + +echo "[Test]: testing prepare_sft_dataset.py ..." + +# FIXME: This is a hack to skip tests that are not working +SKIPPED_TESTS=( +) + +# test prepare_sft_dataset +for model in ${MODELS[@]}; do + data_type="sft" + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$data_type " ]]; then + echo "[Test]: Skipped $model-$data_type" + continue + fi + cache_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/cache + jsonl_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/jsonl + arrow_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/arrow + data_input_dirs=$(get_data_input_dirs $data_type) + tokenizer_dir=$(get_tokenizer_dirs $model) + conversation_template=$(get_conversation_template_config $model) + for i in $(seq $NUM_RETRY); do + rm -rf $cache_dir + rm -rf $jsonl_dir + rm -rf $arrow_dir + echo "[Test]: $model-$data_type, attempt $i" + python $EXAMPLES_DIR/data_preparation_scripts/prepare_dataset.py \ + --type sft \ + --data_input_dirs $data_input_dirs \ + --conversation_template_config $conversation_template \ + --tokenizer_dir $tokenizer_dir \ + --data_cache_dir $cache_dir \ + --data_jsonl_output_dir $jsonl_dir \ + --data_arrow_output_dir $arrow_dir \ + --max_length 400 \ + --num_samples_per_datafile 100 \ + --num_spliced_dataset_bins 1 + passed=$? + if [ $passed -eq 0 ]; then + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$data_type" + exit 1 + fi +done + +echo "[Test]: testing prepare_prompt_dataset.py ..." + +# FIXME: This is a hack to skip tests that are not working +SKIPPED_TESTS=( +) + +# test prepare_prompt_dataset +for model in ${MODELS[@]}; do + data_type="prompt" + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$data_type " ]]; then + echo "[Test]: Skipped $model-$data_type" + continue + fi + cache_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/cache + jsonl_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/jsonl + arrow_dir=$DATA_SAVE_PATH/tokenized_${model}_${data_type}/arrow + data_input_dirs=$(get_data_input_dirs $data_type) + tokenizer_dir=$(get_tokenizer_dirs $model) + conversation_template=$(get_conversation_template_config $model) + for i in $(seq $NUM_RETRY); do + rm -rf $cache_dir + rm -rf $jsonl_dir + rm -rf $arrow_dir + echo "[Test]: $model-$data_type, attempt $i" + python $EXAMPLES_DIR/data_preparation_scripts/prepare_dataset.py \ + --type prompt \ + --data_input_dirs $data_input_dirs \ + --conversation_template_config $conversation_template \ + --tokenizer_dir $tokenizer_dir \ + --data_cache_dir $cache_dir \ + --data_jsonl_output_dir $jsonl_dir \ + --data_arrow_output_dir $arrow_dir \ + --max_length 400 \ + --num_samples_per_datafile 100 \ + --num_spliced_dataset_bins 1 + passed=$? + if [ $passed -eq 0 ]; then + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$data_type" + exit 1 + fi +done diff --git a/applications/ColossalChat/tests/test_lora.py b/applications/ColossalChat/tests/test_lora.py new file mode 100755 index 000000000..4ea9e1a15 --- /dev/null +++ b/applications/ColossalChat/tests/test_lora.py @@ -0,0 +1,69 @@ +import torch +import torch.nn as nn +import torch.optim as optim +from coati.models import convert_to_lora_module +from torch.utils.data import DataLoader, TensorDataset + + +class SimpleNN(nn.Module): + def __init__(self, input_size, hidden_size, num_classes): + super(SimpleNN, self).__init__() + self.fc1 = nn.Linear(input_size, hidden_size) + self.relu = nn.ReLU() + self.fc2 = nn.Linear(hidden_size, num_classes) + + def forward(self, x): + out = self.fc1(x) + out = self.relu(out) + out = self.fc2(out) + return out + + +def test_overfit(): + input_size = 1000 + hidden_size = 200 + num_classes = 5 + batch_size = 64 + learning_rate = 0.01 + num_epochs = 200 + + # Synthesized dataset + X = torch.randn(batch_size, input_size) + Y = torch.randint(0, num_classes, (batch_size,)) + + # Convert to DataLoader + dataset = TensorDataset(X, Y) + loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) + + # Build and convert model + model = SimpleNN(input_size, hidden_size, num_classes) + weight_to_compare = model.fc1.weight.detach().clone() + model = convert_to_lora_module(model, lora_rank=30) + + # Loss and optimizer + criterion = nn.CrossEntropyLoss() + optimizer = optim.Adam(model.parameters(), lr=learning_rate) + + # Train the model + for _ in range(num_epochs): + for i, (inputs, labels) in enumerate(loader): + # Forward pass + outputs = model(inputs) + loss = criterion(outputs, labels) + print(loss) + # Backward and optimize + optimizer.zero_grad() + loss.backward() + optimizer.step() + + # Check if model has overfitted + outputs = model(X) + _, predicted = torch.max(outputs.data, 1) + total = labels.size(0) + correct = (predicted == Y).sum().item() + assert (correct / total > 0.95, "The model has not overfitted to the synthesized dataset") + assert (weight_to_compare - model.fc1.weight).sum() < 0.01 + + +if __name__ == "__main__": + test_overfit() diff --git a/applications/ColossalChat/tests/test_templating.sh b/applications/ColossalChat/tests/test_templating.sh new file mode 100755 index 000000000..7fefede47 --- /dev/null +++ b/applications/ColossalChat/tests/test_templating.sh @@ -0,0 +1,97 @@ + +BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) +BASE_TEMP_DIR=$BASE_DIR/temp +EXAMPLES_DIR=$BASE_DIR/examples +TEST_DATA_DIR=$BASE_DIR/tests/test_data +DATA_SAVE_PATH=$BASE_TEMP_DIR/tests +CONFIG_DIR=$BASE_DIR/config + +MODELS=("colossal-llama2" "llama2" "zephyr" "mistral" "chatGLM2" "Qwen" "Vicuna" "Yi") + +get_pretrain() { + local model=$1 + if [[ $model == "colossal-llama2" ]]; then + echo "hpcai-tech/Colossal-LLaMA-2-7b-base" + elif [[ $model == "llama2" ]]; then + echo "hf-internal-testing/llama-tokenizer" + elif [[ $model == "zephyr" ]]; then + echo "HuggingFaceH4/zephyr-7b-beta" + elif [[ $model == "mistral" ]]; then + echo "mistralai/Mistral-7B-Instruct-v0.2" + elif [[ $model == "chatGLM2" ]]; then + echo "THUDM/chatglm2-6b" + elif [[ $model == "Qwen" ]]; then + echo "Qwen/Qwen-7B-Chat" + elif [[ $model == "Vicuna" ]]; then + echo "lmsys/vicuna-7b-v1.5" + elif [[ $model == "Yi" ]]; then + echo "01-ai/Yi-6B-Chat" + else + echo "Unknown model $model" + exit 1 + fi +} + +get_conversation_template_config() { + local model=$1 + echo "$CONFIG_DIR/conversation_template/$model.json" +} + +# Test SFT data Preparation +for model in ${MODELS[@]}; do + echo "Testing SFT data templating for $model" + SAVE_DIR=$DATA_SAVE_PATH/sft/$model + rm -rf $SAVE_DIR/cache + rm -rf $SAVE_DIR/jsonl + rm -rf $SAVE_DIR/arrow + pretrain=$(get_pretrain $model) + conversation_template_config=$(get_conversation_template_config $model) + python $EXAMPLES_DIR/data_preparation_scripts/prepare_dataset.py --type sft --data_input_dirs $TEST_DATA_DIR/sft \ + --tokenizer_dir $pretrain \ + --conversation_template_config $conversation_template_config \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow + passed=$? + if [ $passed -ne 0 ]; then + echo "[Test]: Failed in the SFT data templating for $model" + exit 1 + fi + python $BASE_DIR/tests/verify_chat_data.py --data_source $TEST_DATA_DIR/sft/test_sft_data.jsonl \ + --to_verify_file $SAVE_DIR/jsonl/part-00005.jsonl --data_type sft + passed=$? + if [ $passed -ne 0 ]; then + echo "[Test]: Failed in the SFT data templating test for $model" + exit 1 + fi +done + + +# Test DPO/PPO data Preparation +for model in ${MODELS[@]}; do + echo "Testing DPO/PPO data templating for $model" + SAVE_DIR=$DATA_SAVE_PATH/dpo/$model + rm -rf $SAVE_DIR/cache + rm -rf $SAVE_DIR/jsonl + rm -rf $SAVE_DIR/arrow + pretrain=$(get_pretrain $model) + conversation_template_config=$(get_conversation_template_config $model) + python $EXAMPLES_DIR/data_preparation_scripts/prepare_dataset.py --type preference --data_input_dirs $TEST_DATA_DIR/dpo \ + --tokenizer_dir $pretrain \ + --conversation_template_config $conversation_template_config \ + --data_cache_dir $SAVE_DIR/cache \ + --data_jsonl_output_dir $SAVE_DIR/jsonl \ + --data_arrow_output_dir $SAVE_DIR/arrow + passed=$? + if [ $passed -ne 0 ]; then + echo "[Test]: Failed in the DPO data templating for $model" + exit 1 + fi + python $BASE_DIR/tests/verify_chat_data.py --data_source $TEST_DATA_DIR/dpo/test_dpo_data.jsonl \ + --to_verify_file $SAVE_DIR/jsonl/part-00005.jsonl --data_type dpo + passed=$? + if [ $passed -ne 0 ]; then + echo "[Test]: Failed in the DPO data templating test for $model" + exit 1 + fi +done diff --git a/applications/ColossalChat/tests/test_train.sh b/applications/ColossalChat/tests/test_train.sh new file mode 100755 index 000000000..5ba490471 --- /dev/null +++ b/applications/ColossalChat/tests/test_train.sh @@ -0,0 +1,397 @@ +#!/usr/bin/env bash + +set_n_least_used_CUDA_VISIBLE_DEVICES() { + local n=${1:-"9999"} + echo "GPU Memory Usage:" + local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | + tail -n +2 | + nl -v 0 | + tee /dev/tty | + sort -g -k 2 | + awk '{print $1}' | + head -n $n) + export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') + echo "Now CUDA_VISIBLE_DEVICES is set to:" + echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" +} + +set_n_least_used_CUDA_VISIBLE_DEVICES 4 + +set -xu + + +NUM_RETRY=3 +BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE))) +EXAMPLES_DIR=$BASE_DIR/examples +CONFIG_DIR=$BASE_DIR/config +TEMP_DIR=$BASE_DIR/temp +TEST_DIR=$BASE_DIR/tests +MODEL_SAVE_PATH=$TEMP_DIR/rlhf_models +MODELS_DIR=$TEMP_DIR/models_config +# Skip those tests due to CI tests timeout +MODELS=('llama') +PLUGINS=('gemini' 'gemini_auto' 'zero2' 'zero2_cpu' '3d') +LORA_RANK=('0') # skip to reduce CI execution time, can pass all locally + +export OMP_NUM_THREADS=8 + +get_pretrain() { + local model=$1 + if [[ $model == "llama" ]]; then + echo "nickypro/tinyllama-110M" + elif [[ $model == "opt" ]]; then + echo "facebook/opt-125m" + else + echo "Unknown model $model" + exit 1 + fi +} + +get_tokenizer_dirs() { + local model=$1 + if [[ $model == "llama" ]]; then + echo "hf-internal-testing/llama-tokenizer" + elif [[ $model == "opt" ]]; then + echo "facebook/opt-125m" + else + echo "Unknown model $model" + exit 1 + fi +} + + +get_conversation_template_config() { + local model=$1 + if [[ $model == "llama" ]]; then + echo "$TEST_DIR/llama.json" + elif [[ $model == "opt" ]]; then + echo "$TEST_DIR/opt.json" + else + echo "Unknown model $model" + exit 1 + fi +} + +random_choice() { + local arr=("$@") + local len=${#arr[@]} + local idx=$((RANDOM % len)) + echo ${arr[$idx]} +} + + +echo "[Test]: testing sft ..." + +SKIPPED_TESTS=( + llama-3d-20 # 3d plugin doesn't support lora + llama-gemini_auto-20 # gemini_auto plugin doesn't support lora + llama-gemini-20 # gemini doesn't support lora +) + +GRAD_CKPTS=('--grad_checkpoint') +for lora_rank in ${LORA_RANK[@]}; do + for model in ${MODELS[@]}; do + for plugin in ${PLUGINS[@]}; do + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then + echo "[Test]: Skipped $model-$plugin-$lora_rank" + continue + elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then + echo "[Test]: Skipped $model-$plugin" + continue + fi + pretrain=$(get_pretrain $model) + tokenizer_dir=$(get_tokenizer_dirs $model) + grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}") + tp='1' + bs='2' + if [[ $plugin == "3d" ]]; then + tp='4' + bs='8' + fi + grad_accu='2' + # Check if the plugin is either "gemini_auto" or "gemini" and set grad_accu to '1' + if [[ $plugin == "gemini_auto" ]]; then + grad_accu='1' + fi + + for i in $(seq $NUM_RETRY); do + echo "[Test]: $model-$plugin-$lora_rank, attempt $i" + declare -a dataset=() + for split in $(seq -f "%05g" 0 0); do + dataset+=("$TEMP_DIR/rlhf_data/tokenized_${model}_sft/arrow/part-$split") + done + colossalai run --nproc_per_node 4 --master_port 31332 $EXAMPLES_DIR/training_scripts/train_sft.py \ + --pretrain $pretrain \ + --tokenizer_dir $tokenizer_dir \ + --dataset ${dataset[@]} \ + --save_path $MODEL_SAVE_PATH \ + --config_file $MODELS_DIR/config.jsonl \ + --lora_rank $lora_rank \ + --plugin $plugin \ + --batch_size $bs \ + --max_epochs 1 \ + --accumulation_steps $grad_accu \ + --tp $tp \ + --lr 2e-5 \ + $grad_ckpt \ + --max_len 400 \ + --use_flash_attn + passed=$? + if [ $passed -eq 0 ]; then + rm -rf $MODEL_SAVE_PATH/* + rm -rf $MODELS_DIR/* + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$plugin-$lora_rank" + exit 1 + fi + done + done +done + +echo "[Test]: testing reward model ..." + +SKIPPED_TESTS=( + llama-3d-20 # 3d plugin doesn't support lora + llama-gemini_auto-20 # gemini_auto plugin doesn't support lora + llama-gemini-20 # gemini doesn't support lora +) + +GRAD_CKPTS=('--grad_checkpoint') +for lora_rank in ${LORA_RANK[@]}; do + for model in ${MODELS[@]}; do + for plugin in ${PLUGINS[@]}; do + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then + echo "[Test]: Skipped $model-$plugin-$lora_rank" + continue + elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then + echo "[Test]: Skipped $model-$plugin" + continue + fi + pretrain=$(get_pretrain $model) + tokenizer_dir=$(get_tokenizer_dirs $model) + grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}") + tp='1' + bs='2' + if [[ $plugin == "3d" ]]; then + tp='4' + bs='8' + fi + grad_accu='2' + # gemini_auto and gemini doesn't support gradient accumulation + if [[ $plugin == "gemini_auto" ]]; then + grad_accu='1' + fi + for i in $(seq $NUM_RETRY); do + echo "[Test]: $model-$plugin-$lora_rank, attempt $i" + declare -a dataset=() + for split in $(seq -f "%05g" 0 0); do + dataset+=("$TEMP_DIR/rlhf_data/tokenized_${model}_preference/arrow/part-$split") + done + colossalai run --nproc_per_node 4 --master_port 31332 $EXAMPLES_DIR/training_scripts/train_rm.py \ + --pretrain $pretrain \ + --tokenizer_dir $tokenizer_dir \ + --dataset ${dataset[@]} \ + --save_dir $MODEL_SAVE_PATH \ + --config_file $MODELS_DIR/config.jsonl \ + --lora_rank $lora_rank \ + --plugin $plugin \ + --batch_size $bs \ + --max_epochs 1 \ + --accumulation_steps $grad_accu \ + --tp $tp \ + --lr 2e-5 \ + $grad_ckpt \ + --max_len 400 \ + --use_flash_attn + passed=$? + if [ $passed -eq 0 ]; then + rm -rf $MODEL_SAVE_PATH/* + rm -rf $MODELS_DIR/* + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$plugin-$lora_rank" + exit 1 + fi + done + done +done + + +echo "[Test]: testing ppo ..." + + +SKIPPED_TESTS=( + llama-3d-20 # 3d plugin doesn't support lora + llama-gemini-20 # gemini doesn't support lora +) + +GRAD_CKPTS=('--grad_checkpoint') +for lora_rank in ${LORA_RANK[@]}; do + for model in ${MODELS[@]}; do + for plugin in ${PLUGINS[@]}; do + if [[ $plugin == "gemini_auto" ]]; then + echo "[Test]: Skipped $model-$plugin" + continue # gemini_auto plugin doesn't support generation + fi + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then + echo "[Test]: Skipped $model-$plugin-$lora_rank" + continue + elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then + echo "[Test]: Skipped $model-$plugin" + continue + fi + pretrain=$(get_pretrain $model) + tokenizer_dir=$(get_tokenizer_dirs $model) + grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}") + tp='1' + bs='4' + ebs='8' + conversation_template=$(get_conversation_template_config $model) + if [[ $plugin == "3d" ]]; then + tp='4' + bs='16' + ebs='32' + fi + grad_accu='2' + # gemini_auto and gemini doesn't support gradient accumulation + if [[ $plugin == "gemini_auto" ]]; then + grad_accu='1' + fi + # gemini_auto and gemini doesn't support generation + if [[ $plugin == "gemini_auto" ]]; then + # gemini-auto doesn't support generation + echo "[Test]: Skipped $model-$plugin" + continue + fi + for i in $(seq $NUM_RETRY); do + echo "[Test]: $model-$plugin-$lora_rank, attempt $i" + declare -a prompt_dataset=() + for split in $(seq -f "%05g" 0 0); do + prompt_dataset+=("$TEMP_DIR/rlhf_data/tokenized_${model}_prompt/arrow/part-$split") + done + declare -a ptx_dataset=() + for split in $(seq -f "%05g" 0 0); do + ptx_dataset+=("$TEMP_DIR/rlhf_data/tokenized_${model}_sft/arrow/part-$split") + done + colossalai run --nproc_per_node 4 --master_port 31332 $EXAMPLES_DIR/training_scripts/train_ppo.py \ + --pretrain $pretrain \ + --rm_pretrain $pretrain \ + --tokenizer_dir $tokenizer_dir \ + --conversation_template_config $conversation_template \ + --prompt_dataset ${prompt_dataset[@]} \ + --ptx_dataset ${ptx_dataset[@]} \ + --ptx_batch_size 1 \ + --ptx_coef 0.2 \ + --save_path $MODEL_SAVE_PATH \ + --lora_rank $lora_rank \ + --plugin $plugin \ + --num_episodes 5 \ + --num_collect_steps 1 \ + --num_update_steps 1 \ + --experience_batch_size $ebs \ + --train_batch_size $bs \ + --accumulation_steps $grad_accu \ + --lr 9e-6 \ + --mixed_precision "bf16" \ + --grad_clip 1.0 \ + --tp $tp \ + --lr 2e-5 \ + $grad_ckpt \ + --max_len 400 \ + --max_seq_len 10 \ + --use_flash_attn + passed=$? + if [ $passed -eq 0 ]; then + rm -rf $MODEL_SAVE_PATH/* + rm -rf $MODELS_DIR/* + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$plugin-$lora_rank" + exit 1 + fi + done + done +done + + +echo "[Test]: testing DPO ..." + +SKIPPED_TESTS=( + llama-3d-20 # 3d plugin doesn't support lora + llama-gemini_auto-20 # gemini_auto plugin doesn't support lora + llama-gemini-20 # gemini doesn't support lora +) +GRAD_CKPTS=('--grad_checkpoint') +for lora_rank in ${LORA_RANK[@]}; do + for model in ${MODELS[@]}; do + for plugin in ${PLUGINS[@]}; do + if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then + echo "[Test]: Skipped $model-$plugin-$lora_rank" + continue + elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then + echo "[Test]: Skipped $model-$plugin" + continue + fi + pretrain=$(get_pretrain $model) + tokenizer_dir=$(get_tokenizer_dirs $model) + grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}") + tp='1' + bs='2' + if [[ $plugin == "3d" ]]; then + tp='4' + bs='8' + fi + grad_accu='2' + # gemini_auto and gemini doesn't support gradient accumulation + if [[ $plugin == "gemini_auto" ]]; then + grad_accu='1' + fi + # gemini_auto doesn't support generation + # (need to calculate ref_model logits through forwarding in inference mode) + if [[ $plugin == "gemini_auto" ]]; then + echo "[Test]: Skipped $model-$plugin" + continue + fi + for i in $(seq $NUM_RETRY); do + echo "[Test]: $model-$plugin-$lora_rank, attempt $i" + declare -a dataset=() + for split in $(seq -f "%05g" 0 0); do + dataset+=("$TEMP_DIR/rlhf_data/tokenized_${model}_preference/arrow/part-$split") + done + colossalai run --nproc_per_node 4 --master_port 31332 $EXAMPLES_DIR/training_scripts/train_dpo.py \ + --pretrain $pretrain \ + --tokenizer_dir $tokenizer_dir \ + --dataset ${dataset[@]} \ + --save_dir $MODEL_SAVE_PATH \ + --config_file $MODELS_DIR/config.jsonl \ + --lora_rank $lora_rank \ + --plugin $plugin \ + --batch_size $bs \ + --max_epochs 1 \ + --accumulation_steps $grad_accu \ + --tp $tp \ + --lr 2e-5 \ + $grad_ckpt \ + --max_len 400 \ + --use_flash_attn + passed=$? + if [ $passed -eq 0 ]; then + rm -rf $MODEL_SAVE_PATH/* + rm -rf $MODELS_DIR/* + break + fi + done + if [ $passed -ne 0 ]; then + echo "[Test]: Failed $model-$plugin-$lora_rank" + exit 1 + fi + done + done +done diff --git a/applications/ColossalChat/tests/verify_chat_data.py b/applications/ColossalChat/tests/verify_chat_data.py new file mode 100644 index 000000000..98ae0c1b2 --- /dev/null +++ b/applications/ColossalChat/tests/verify_chat_data.py @@ -0,0 +1,64 @@ +import argparse +import json + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--data_source", + type=str, + required=True, + default=None, + help="The raw data file", + ) + parser.add_argument( + "--to_verify_file", + type=str, + required=True, + default=None, + help="The file that contains the data to be verified", + ) + parser.add_argument( + "--data_type", + type=str, + required=True, + default=None, + help="The data type", + ) + args = parser.parse_args() + + # Read data + data = [] + with open(args.data_source, "r", encoding="utf8") as f: + for line in f.readlines(): + data.append(json.loads(line)) + to_verify_data = [] + with open(args.to_verify_file, "r", encoding="utf8") as f: + for line in f.readlines(): + to_verify_data.append(json.loads(line)) + + if args.data_type == "sft": + target_lable = [msg["content"].strip() for msg in data[0]["messages"] if msg["from"] == "assistant"] + target_negative_label = [msg["content"].strip() for msg in data[0]["messages"] if msg["from"] == "human"] + + # Read to verify file + + to_verify_lable = to_verify_data[0]["labels_decode"] + for label in target_lable: + assert any([label in s for s in to_verify_lable]), f"Label {label} not in target label {to_verify_lable}" + for label in target_negative_label: + assert all( + [label not in s for s in to_verify_lable] + ), f"Negative label {label} in target label {to_verify_lable}" + elif args.data_type == "dpo": + chosen_lable = data[0]["chosen"][0]["content"].strip() + rejected_lable = data[0]["rejected"][0]["content"].strip() + + # Read to verify file + to_verify_lable_chosen = to_verify_data[0]["chosen_label_decode"] + to_verify_lable_rejected = to_verify_data[0]["rejected_label_decode"] + assert any( + [chosen_lable in s for s in to_verify_lable_chosen] + ), f"Chosen label {chosen_lable} not in target chosen label {to_verify_lable_chosen}" + assert any( + [rejected_lable in s for s in to_verify_lable_rejected] + ), f"Rejected label {rejected_lable} not in target rejected label {to_verify_lable_chosen}" diff --git a/applications/Chat/version.txt b/applications/ColossalChat/version.txt old mode 100644 new mode 100755 similarity index 100% rename from applications/Chat/version.txt rename to applications/ColossalChat/version.txt