diff --git a/colossalai/fx/tracer/meta_patch/patched_module/convolution.py b/colossalai/fx/tracer/meta_patch/patched_module/convolution.py index 327450cb2..32bf1b8da 100644 --- a/colossalai/fx/tracer/meta_patch/patched_module/convolution.py +++ b/colossalai/fx/tracer/meta_patch/patched_module/convolution.py @@ -56,33 +56,32 @@ def torch_nn_conv3d(self, input): ) return torch.empty(result_shape, device='meta') + @meta_patched_module.register(torch.nn.ConvTranspose1d) def torch_nn_convtranspose1d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html l_in = input.shape[-1] c_out = self.out_channels - l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + - self.dilation[0] * (self.kernel_size[0] - 1) + - self.output_padding[0] + 1) + l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * + (self.kernel_size[0] - 1) + self.output_padding[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') + @meta_patched_module.register(torch.nn.ConvTranspose2d) def torch_nn_convtranspose2d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html h_in, w_in = input.shape[-2:] c_out = self.out_channels - h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + - self.dilation[0] * (self.kernel_size[0] - 1) + - self.output_padding[0] + 1) - w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + - self.dilation[1] * (self.kernel_size[1] - 1) + - self.output_padding[1] + 1) + h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * + (self.kernel_size[0] - 1) + self.output_padding[0] + 1) + w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * + (self.kernel_size[1] - 1) + self.output_padding[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, @@ -90,25 +89,23 @@ def torch_nn_convtranspose2d(self, input): ) return torch.empty(result_shape, device='meta') + @meta_patched_module.register(torch.nn.ConvTranspose3d) def torch_nn_convtranspose3d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html d_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels - d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + - self.dilation[0] * (self.kernel_size[0] - 1) + - self.output_padding[0] + 1) - h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + - self.dilation[1] * (self.kernel_size[1] - 1) + - self.output_padding[1] + 1) - w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + - self.dilation[2] * (self.kernel_size[2] - 1) + - self.output_padding[2] + 1) + d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * + (self.kernel_size[0] - 1) + self.output_padding[0] + 1) + h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * + (self.kernel_size[1] - 1) + self.output_padding[1] + 1) + w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] * + (self.kernel_size[2] - 1) + self.output_padding[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) - return torch.empty(result_shape, device='meta') \ No newline at end of file + return torch.empty(result_shape, device='meta')