mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-24 03:03:37 +00:00
adapted for sequence parallel (#163)
This commit is contained in:
@@ -1,48 +1,150 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import pytest
|
||||
import colossalai
|
||||
import colossalai.nn as col_nn
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import get_dist_logger
|
||||
from checks_seq.check_layer_seq import *
|
||||
import pytest
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context import ParallelMode
|
||||
from functools import partial
|
||||
from colossalai.utils import free_port
|
||||
|
||||
|
||||
CONFIG = dict(
|
||||
parallel=dict(
|
||||
pipeline=1,
|
||||
tensor=dict(mode='sequence', size=4)
|
||||
tensor=dict(size=4, mode='sequence')
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def check_layer():
|
||||
check_selfattention()
|
||||
def check_ring_qk(rank, world_size):
|
||||
# params
|
||||
batch_size = 4
|
||||
num_heads = 4
|
||||
seq_length = 32
|
||||
attention_head_size = 32
|
||||
sub_seq_length = seq_length // world_size
|
||||
|
||||
# create master tensors
|
||||
q = torch.rand(batch_size*num_heads, seq_length, attention_head_size).cuda()
|
||||
k = torch.rand(batch_size*num_heads, seq_length, attention_head_size).cuda()
|
||||
dist.broadcast(q, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
||||
dist.broadcast(k, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
||||
|
||||
# create distributed tensors
|
||||
sub_q = q.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous()
|
||||
sub_k = k.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous()
|
||||
|
||||
# set autograd attributes
|
||||
q.requires_grad = True
|
||||
k.requires_grad = True
|
||||
q.retain_grad()
|
||||
k.retain_grad()
|
||||
sub_q.requires_grad = True
|
||||
sub_k.requires_grad = True
|
||||
sub_q.retain_grad()
|
||||
sub_k.retain_grad()
|
||||
|
||||
# compute master attention scores
|
||||
a = torch.matmul(q, k.transpose(2, 1))
|
||||
|
||||
# compute distributed attention scores
|
||||
ring_qk = colossalai.nn.layer.parallel_sequence.RingQK.apply
|
||||
sub_a = ring_qk(sub_q, sub_k, batch_size, num_heads, sub_seq_length)
|
||||
|
||||
# check master and distributed attetion scores
|
||||
sub_master_a = a[:, rank*sub_seq_length:(rank+1)*sub_seq_length]
|
||||
assert torch.allclose(sub_a, sub_master_a, rtol=1e-5, atol=1e-2)
|
||||
|
||||
# run master backward
|
||||
a.retain_grad()
|
||||
a.mean().backward()
|
||||
|
||||
# run distributed backward
|
||||
partial_master_a_grad = a.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length]
|
||||
torch.autograd.backward(sub_a, partial_master_a_grad)
|
||||
|
||||
# check master and distributed grads
|
||||
partial_master_q_grad = q.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length]
|
||||
assert torch.allclose(sub_q.grad, partial_master_q_grad, rtol=1e-5, atol=1e-2), \
|
||||
'attention score cannot match'
|
||||
|
||||
|
||||
def run_check_sequence(rank, world_size, port):
|
||||
# init dist
|
||||
launch(config=CONFIG,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
port=port,
|
||||
backend='nccl')
|
||||
logger = get_dist_logger()
|
||||
logger.info('Distributed environment is initialzied.', ranks=[0])
|
||||
def check_ring_av(rank, world_size):
|
||||
# params
|
||||
batch_size = 4
|
||||
num_heads = 4
|
||||
seq_length = 16
|
||||
attention_head_size = 32
|
||||
sub_seq_length = seq_length // world_size
|
||||
|
||||
# check layers
|
||||
check_layer()
|
||||
# create master tensors
|
||||
a = torch.rand(batch_size*num_heads, seq_length, seq_length).cuda()
|
||||
v = torch.rand(batch_size*num_heads, seq_length, attention_head_size).cuda()
|
||||
dist.broadcast(a, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
||||
dist.broadcast(v, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
||||
|
||||
# create distributed tensors
|
||||
sub_a = a.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous()
|
||||
sub_v = v.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous()
|
||||
|
||||
# set autograd attributes
|
||||
a.requires_grad = True
|
||||
v.requires_grad = True
|
||||
a.retain_grad()
|
||||
v.retain_grad()
|
||||
sub_a.requires_grad = True
|
||||
sub_v.requires_grad = True
|
||||
sub_a.retain_grad()
|
||||
sub_v.retain_grad()
|
||||
|
||||
# compute master attention scores
|
||||
out = torch.matmul(a, v)
|
||||
|
||||
# compute distributed attention scores
|
||||
ring_av = colossalai.nn.layer.parallel_sequence.RingAV.apply
|
||||
sub_out = ring_av(sub_a, sub_v, batch_size, num_heads, attention_head_size, sub_seq_length)
|
||||
|
||||
# print(f'master output shape: {out.shape}, partial output shape: {sub_out.shape}')
|
||||
|
||||
# check master and distributed output
|
||||
sub_master_out = out[:, rank*sub_seq_length:(rank+1)*sub_seq_length]
|
||||
assert torch.allclose(sub_out, sub_master_out, rtol=1e-5, atol=1e-2)
|
||||
|
||||
# # run master backward
|
||||
out.retain_grad()
|
||||
out.mean().backward()
|
||||
|
||||
# # run distributed backward
|
||||
partial_master_out_grad = out.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length]
|
||||
torch.autograd.backward(sub_out, partial_master_out_grad)
|
||||
|
||||
# # check master and distributed grads
|
||||
partial_master_a_grad = a.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length]
|
||||
assert torch.allclose(sub_a.grad, partial_master_a_grad, rtol=1e-5, atol=1e-2), \
|
||||
'attention output cannot match'
|
||||
|
||||
|
||||
def run_test(rank, world_size):
|
||||
colossalai.launch(
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
config=CONFIG,
|
||||
host='localhost',
|
||||
port=29500
|
||||
)
|
||||
|
||||
# check_ring_qk(rank, world_size)
|
||||
check_ring_av(rank, world_size)
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_sequence():
|
||||
world_size = 4
|
||||
run_func = partial(run_check_sequence, world_size=world_size, port=free_port())
|
||||
run_func = partial(run_test, world_size=world_size)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user