[Feat]Tensor Model Parallel Support For Inference (#5563)

* tensor parallel support naive source

* [fix]precision, model load and refactor the framework

* add tp unit test

* docstring

* fix do_sample
This commit is contained in:
Runyu Lu
2024-04-18 16:56:46 +08:00
committed by GitHub
parent be396ad6cc
commit e37ee2fb65
8 changed files with 640 additions and 150 deletions

View File

@@ -1,4 +1,3 @@
from torch.nn import Parameter
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, LlamaRMSNorm
from colossalai.inference.modeling.models.nopadding_llama import (
@@ -10,6 +9,7 @@ from colossalai.inference.modeling.models.nopadding_llama import (
llama_rmsnorm_forward,
)
from colossalai.inference.utils import init_to_get_rotary
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
@@ -21,26 +21,69 @@ class NoPaddingLlamaModelInferPolicy(LlamaForCausalLMPolicy):
def module_policy(self):
policy = super().module_policy()
decoder_attribute_replacement = {
"lm_head.weight": Parameter(self.model.lm_head.weight.transpose(0, 1), requires_grad=False),
}
policy[LlamaForCausalLM] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
if self.shard_config.enable_tensor_parallelism:
decoder_attribute_replacement = {
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
}
if getattr(self.model.config, "num_key_value_heads", False):
decoder_attribute_replacement["self_attn.num_key_value_heads"] = (
self.model.config.num_key_value_heads // self.shard_config.tensor_parallel_size
)
else:
decoder_attribute_replacement = None
policy[LlamaDecoderLayer] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="mlp",
target_module=NopadLlamaMLP,
),
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="self_attn",
target_module=NopadLlamaAttention,
),
]
],
)
policy[LlamaForCausalLM] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head", target_module=Linear1D_Col, kwargs={"gather_output": True}
)
],
)
# self.shard_config._infer()
self.append_or_create_method_replacement(
description={"forward": llama_causal_lm_forward}, policy=policy, target_key=LlamaForCausalLM
)