mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[Feat]Tensor Model Parallel Support For Inference (#5563)
* tensor parallel support naive source * [fix]precision, model load and refactor the framework * add tp unit test * docstring * fix do_sample
This commit is contained in:
@@ -3,24 +3,27 @@ import random
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.multiprocessing import Manager
|
||||
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM
|
||||
|
||||
import colossalai
|
||||
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
|
||||
from colossalai.inference.core.engine import InferenceEngine
|
||||
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
||||
from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM
|
||||
from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def setup_seed(seed):
|
||||
torch.manual_seed(seed)
|
||||
torch.random.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
np.random.seed(seed)
|
||||
random.seed(seed)
|
||||
|
||||
|
||||
def check_inference_engine(use_engine=False, prompt_template=None):
|
||||
def check_inference_engine(use_engine=False, prompt_template=None, do_sample=True, policy=None):
|
||||
setup_seed(20)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||
model = LlamaForCausalLM(
|
||||
@@ -36,13 +39,19 @@ def check_inference_engine(use_engine=False, prompt_template=None):
|
||||
]
|
||||
|
||||
output_len = 38
|
||||
do_sample = True
|
||||
do_sample = do_sample
|
||||
top_p = 0.5
|
||||
top_k = 50
|
||||
|
||||
if use_engine:
|
||||
inference_config = InferenceConfig(max_output_len=output_len, prompt_template=prompt_template, dtype="fp32")
|
||||
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
|
||||
inference_config = InferenceConfig(
|
||||
max_output_len=output_len,
|
||||
prompt_template=prompt_template,
|
||||
dtype="fp32",
|
||||
use_cuda_kernel=True,
|
||||
tp_size=dist.get_world_size(),
|
||||
)
|
||||
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
|
||||
assert inference_engine.generation_config.max_new_tokens == output_len
|
||||
inference_engine.add_request(prompts=inputs)
|
||||
assert inference_engine.request_handler._has_waiting()
|
||||
@@ -69,20 +78,14 @@ def check_inference_engine(use_engine=False, prompt_template=None):
|
||||
return outputs
|
||||
|
||||
|
||||
@parameterize("prompt_template", [None, "llama"])
|
||||
def check_output_consistency(prompt_template):
|
||||
cai_outputs = check_inference_engine(use_engine=True, prompt_template=prompt_template)
|
||||
transformer_outputs = check_inference_engine(use_engine=False, prompt_template=prompt_template)
|
||||
def run_engine(world_size, **kwargs):
|
||||
manager = Manager()
|
||||
result_list = manager.list([-1] * world_size) # Create a shared list
|
||||
|
||||
for s1, s2 in zip(cai_outputs, transformer_outputs):
|
||||
assert s1 == s2, f"\nColossalAI Output: {s1}\nTransformers Output: {s2}"
|
||||
|
||||
# clear singleton flash decoding tensors
|
||||
FDIntermTensors._instances = {}
|
||||
spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs)
|
||||
return result_list[0]
|
||||
|
||||
|
||||
@parameterize("num_layers", [1])
|
||||
@parameterize("max_length", [100])
|
||||
def check_spec_dec(num_layers, max_length):
|
||||
torch.manual_seed(123)
|
||||
|
||||
@@ -152,16 +155,47 @@ def check_spec_dec(num_layers, max_length):
|
||||
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_length
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
|
||||
check_output_consistency()
|
||||
check_spec_dec()
|
||||
|
||||
if ret:
|
||||
ret[rank] = func_to_run(**kwargs)
|
||||
else:
|
||||
func_to_run(**kwargs)
|
||||
|
||||
|
||||
@parameterize("prompt_template", [None, "llama"])
|
||||
@parameterize("do_sample", [False])
|
||||
def test_tp_engine(prompt_template, do_sample):
|
||||
kwargs1 = {
|
||||
"use_engine": True,
|
||||
"prompt_template": prompt_template,
|
||||
"do_sample": do_sample,
|
||||
"policy": NoPaddingLlamaModelInferPolicy(),
|
||||
}
|
||||
|
||||
kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None}
|
||||
|
||||
colossal_tp_1_output = run_engine(1, **kwargs1)
|
||||
colossal_tp_2_output = run_engine(2, **kwargs1)
|
||||
transformer_tp_1_output = run_engine(1, **kwargs2)
|
||||
|
||||
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
|
||||
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
|
||||
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"
|
||||
|
||||
|
||||
@parameterize("num_layers", [1])
|
||||
@parameterize("max_length", [100])
|
||||
def test_spec_dec(num_layers, max_length):
|
||||
spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_inference_engine():
|
||||
spawn(run_dist, 1)
|
||||
test_tp_engine()
|
||||
test_spec_dec()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Reference in New Issue
Block a user