[Tensor] get named parameters for model using ColoTensors (#874)

This commit is contained in:
Jiarui Fang
2022-04-26 14:08:01 +08:00
committed by GitHub
parent 2883040286
commit e43f83aa5c
3 changed files with 59 additions and 3 deletions

View File

@@ -2,8 +2,10 @@ from .spec import ComputePattern, ParallelAction, TensorSpec
from .op_wrapper import (
colo_op_impl,)
from .colo_tensor import ColoTensor
from .utils import convert_parameter
from .utils import convert_parameter, named_params_with_colotensor
from ._ops import *
__all__ = ['ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern',
'TensorSpec', 'ParallelAction']
__all__ = [
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
'named_params_with_colotensor'
]

View File

@@ -2,6 +2,57 @@ import torch
from colossalai.tensor.colo_tensor import ColoTensor
from typing import Iterator, Tuple, Union
import torch.nn as nn
from colossalai.tensor import ColoTensor
# The function is credited to PyTorch Team
def named_params_with_colotensor(
module: nn.Module,
prefix: str = '',
recurse: bool = True,
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
r"""Returns an iterator over module parameters (together with the
ColoTensor parameters), yielding both the name of the parameter
as well as the parameter itself. This is typically passed to a
:class:torchshard._shard.sharded_optim.ShardedOptimizer
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
(string, Union[Tensor, ColoTensor]): Tuple containing
the name and parameter (or ColoTensor parameter)
Example::
>>> model = torch.nn.Linear(*linear_size)
>>> delattr(model.weight)
>>> setattr(model.weight, ColoTensor(...))
>>> for name, param in named_params_with_colotensor(model):
>>> if name in ['weight']:
>>> print(param.size())
"""
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
memo = set()
for mod_prefix, mod in modules:
# find all sharded tensor params
for name, val in vars(mod).items():
if isinstance(val, ColoTensor) and val not in memo:
memo.add(val)
name = mod_prefix + ('.' if mod_prefix else '') + name
yield name, val
# find all nn.Parameters
for name, val in module.named_parameters():
yield name, val
def _convert_tensor(tensor: torch.Tensor) -> ColoTensor:
return ColoTensor(tensor)