mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 05:01:44 +00:00
[Pipeline Middleware] fix data race in Pipeline Scheduler for DAG (#2087)
* add DAG test case * fix datarace by adjusting theposition of lock * polish code * fix pytest for middleware * remove test Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
This commit is contained in:
@@ -16,7 +16,6 @@ from torch import autograd, nn, optim
|
||||
from torch._C._distributed_rpc import PyRRef
|
||||
from torch.futures import Future
|
||||
|
||||
|
||||
class Phase(Enum):
|
||||
FORWARD = 0
|
||||
BACKWARD = 1
|
||||
@@ -136,9 +135,6 @@ class WorkerBase(ABC):
|
||||
self.criterion = criterion
|
||||
self.metric = metric
|
||||
|
||||
# middleware info
|
||||
self._is_output = False
|
||||
|
||||
# context to maintain loop
|
||||
self._initialize_context_container()
|
||||
|
||||
@@ -190,21 +186,33 @@ class WorkerBase(ABC):
|
||||
with self.output_list_condition_lock:
|
||||
self.output_list_condition_lock.wait_for(lambda: key in self.output_list)
|
||||
output_work_item = self.output_list[key]
|
||||
|
||||
self.output_list.pop(key)
|
||||
|
||||
output_work_item.refcount += 1
|
||||
refcount = output_work_item.refcount
|
||||
output = output_work_item.output
|
||||
|
||||
if output_work_item.phase != Phase.INPUT:
|
||||
# lifecycle management for DAG scheduler
|
||||
lifecycle = len(self.get_consumer_stage_ids())
|
||||
if self.is_model_output(): # an extra reference for scheduler collecting results
|
||||
lifecycle += 1
|
||||
with self.output_list_condition_lock:
|
||||
# all consumers have been satisfied, the work_item can be released
|
||||
# or put it into work list again.
|
||||
if refcount < lifecycle:
|
||||
self.output_list[key] = output_work_item
|
||||
self.output_list_condition_lock.notify_all()
|
||||
else:
|
||||
with self.output_list_condition_lock:
|
||||
self.output_list[key] = output_work_item
|
||||
self.output_list_condition_lock.notify_all()
|
||||
|
||||
if isinstance(output, Future):
|
||||
output = output.wait()
|
||||
|
||||
# output_work_item.refcount += 1
|
||||
|
||||
# TODO(jiangziyue) redesign lifecycle management for DAG scheduler
|
||||
# all consumers have been satisfied, the work_item can be released
|
||||
with self.output_list_condition_lock:
|
||||
if output_work_item.refcount >= len(self.consumer_stage_ids):
|
||||
self.output_list.pop(key)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def get_parameters(self) -> List[torch.Tensor]:
|
||||
return [p for p in self.module_partition.parameters()]
|
||||
|
||||
@@ -246,8 +254,6 @@ class WorkerBase(ABC):
|
||||
raise TypeError(f"Input batch can be only dict, list, tuple or tensor, but receive {type(microbatch)}")
|
||||
|
||||
# just for first pp_rank
|
||||
# TODO(jiangziyue) Consider whether this function should be protected by Lock in DAG env.
|
||||
# TODO(jiangziyue) Define a Class for DAG.
|
||||
def set_input(self, microbatch_id: int, microbatch: Tuple[Any], forward_only: bool):
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
output = self._get_future_by_device()
|
||||
@@ -311,9 +317,8 @@ class WorkerBase(ABC):
|
||||
|
||||
self.work_list[key] = work_item
|
||||
self.work_list_condition_lock.notify_all()
|
||||
|
||||
# TODO(jiangziyue) Consider whether this function should be protected by Lock in DAG env.
|
||||
def subscribe_producer(self, microbatch_id: int, forward_only: bool):
|
||||
|
||||
def _subscribe_producer(self, microbatch_id: int, forward_only: bool):
|
||||
"""
|
||||
You should call this function asynchronously
|
||||
"""
|
||||
@@ -328,10 +333,6 @@ class WorkerBase(ABC):
|
||||
producer_worker_rref = self.pp_rank_to_worker_rref[producer_stage_id]
|
||||
subscribe_forward_futures[i] = producer_worker_rref.rpc_async().get_output_by_key(producer_output_key)
|
||||
else:
|
||||
with self.work_list_condition_lock:
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
if key in self.work_list:
|
||||
return
|
||||
producer_stage_ids = self.get_producer_stage_ids()
|
||||
producer_num = len(producer_stage_ids)
|
||||
if self.need_model_input():
|
||||
@@ -360,11 +361,19 @@ class WorkerBase(ABC):
|
||||
|
||||
work_item_from_producer = WorkItem(stage_id, Phase.FORWARD, subscribe_forward_futures, {}, output,
|
||||
microbatch_id, None, self.num_microbatches, forward_only)
|
||||
|
||||
# add work_item to work_list
|
||||
|
||||
return work_item_from_producer
|
||||
|
||||
# TODO(jiangziyue) Profile the side effect of the lock for lifecycle protection and consider a better one.
|
||||
def subscribe_producer(self, microbatch_id: int, forward_only: bool):
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
with self.work_list_condition_lock:
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
if key not in self.work_list:
|
||||
# On current PP middleware design for DAG, get_output_by_key used by _subscribe_producer
|
||||
# can only be executed once for every producer-consumer stage pair, which is necessary
|
||||
# to count the lifecycle of work_item. So, keeping the _subscribe_producer in the same
|
||||
# lock of work_item queue operation gurantees the consistency of lifecycle counter.
|
||||
work_item_from_producer = self._subscribe_producer(microbatch_id, forward_only)
|
||||
self.work_list[key] = work_item_from_producer
|
||||
self.work_list_condition_lock.notify_all()
|
||||
|
||||
@@ -444,12 +453,10 @@ class WorkerBase(ABC):
|
||||
self.producer_stage_ids = self.get_producer_stage_ids()
|
||||
self.consumer_stage_ids = self.get_consumer_stage_ids()
|
||||
|
||||
# TODO(jiangziyue) Define a Class for DAG.
|
||||
def pp_rank_to_partition_id(self, pp_rank: int, topo: Topo):
|
||||
partition_ids = topo.get_mid_partition_ids()
|
||||
return partition_ids[pp_rank]
|
||||
|
||||
# TODO(jiangziyue) Define a Class for DAG.
|
||||
def partition_id_to_pp_rank(self, partition_id: int, topo: Topo):
|
||||
partition_ids = topo.get_mid_partition_ids()
|
||||
for i, id in enumerate(partition_ids):
|
||||
@@ -551,6 +558,9 @@ class WorkerBase(ABC):
|
||||
if model_input_partition_id in partition_inputs:
|
||||
need_input = True
|
||||
return not self.is_first_stage() and need_input
|
||||
|
||||
def is_model_output(self):
|
||||
return self.is_last_stage()
|
||||
|
||||
def _default_data_process_func(self, args_kwargs):
|
||||
if self.is_first_stage():
|
||||
@@ -748,7 +758,8 @@ class WorkerBase(ABC):
|
||||
|
||||
# move current work item to output_list to activate subscribe in advance
|
||||
with self.work_list_condition_lock:
|
||||
work_item = self.work_list.pop(work_item_key)
|
||||
#self.work_list_condition_lock.wait_for(lambda: work_item_key in self.work_list)
|
||||
work_item = self.work_list[work_item_key]
|
||||
|
||||
with self.output_list_condition_lock:
|
||||
# assert work_item_key not in self.output_list
|
||||
@@ -758,6 +769,8 @@ class WorkerBase(ABC):
|
||||
consume_result = self._consume_work_item_by_phase(work_item)
|
||||
|
||||
work_item.output.set_result(consume_result)
|
||||
with self.work_list_condition_lock:
|
||||
self.work_list.pop(work_item_key)
|
||||
|
||||
# if is last step in one batch reset context and do step
|
||||
if self._is_last_step(work_item):
|
||||
|
Reference in New Issue
Block a user