[optim] refactor fused sgd (#1134)

This commit is contained in:
ver217
2022-06-20 11:19:38 +08:00
committed by GitHub
parent d26902645e
commit e4f555f29a
2 changed files with 31 additions and 135 deletions

View File

@@ -28,10 +28,10 @@
* first run : necessary for proper momentum handling & init
* wd_after_momentum : apply weight decay _after_ momentum instead of before
**/
template <int N, typename T_grad, typename T_weight>
template <typename T_grad, typename T_weight>
struct SGDFunctor {
__device__ __forceinline__ void operator()(
int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl,
int chunk_size, volatile int *noop_gmem, TensorListMetadata<3> &tl,
float wd, float momentum, float dampening, float lr, bool nesterov,
bool first_run, bool wd_after_momentum, float scale) {
// Early exit if we don't need to do anything
@@ -50,12 +50,6 @@ struct SGDFunctor {
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
mom_in += chunk_idx * chunk_size;
at::Half *model_weights_out = nullptr;
if (N == 4) {
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
model_weights_out += chunk_idx * chunk_size;
}
n -= chunk_idx * chunk_size;
// Non-divergent exit condition for the __syncthreads
@@ -110,10 +104,6 @@ struct SGDFunctor {
// adjust the weight and write out
weight_in[i] += (-lr * incoming_grads[ii]);
// if necessary, write out an fp16 copy of the weights
if (N == 4)
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
// also write out the new momentum
if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
}
@@ -131,20 +121,14 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
auto grad_type = tensor_lists[0][0].scalar_type();
auto weight_type = tensor_lists[1][0].scalar_type();
if (num_tensors == 4)
for (int i = 0; i < tensor_lists[3].size(); i++)
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
"Additional output tensors should always be fp16.");
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
"expected noop flag to be on the same device as tensors");
// We have 3 possibilities to handle here, in terms of
// grad_type, param_type, momentum_type, requires_fp16_copy
// 1. fp16, fp16, fp16, No
// 2. fp32, fp32, fp32, No
// 3. fp16, fp32, fp32, Yes
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case
// grad_type, param_type, momentum_type
// 1. fp16, fp16, fp16
// 2. fp32, fp32, fp32
// 3. fp16, fp32, fp32
// It's easier to hardcode these possibilities than to use
// switches etc. to handle the cross-product of cases where
// we don't want the majority of them.
@@ -153,49 +137,22 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Half && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<3, at::Half, at::Half>(), wd, momentum,
SGDFunctor<at::Half, at::Half>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
// Case 2. fp16, fp32, fp32, No
// else if (grad_type == at::ScalarType::Half &&
// weight_type == at::ScalarType::Float &&
// num_tensors == 3) {
// multi_tensor_apply<3>(
// BLOCK_SIZE,
// chunk_size,
// noop_flag,
// tensor_lists,
// SGDFunctor<3, at::Half, float>(),
// wd,
// momentum,
// dampening,
// lr,
// nesterov,
// first_run,
// wd_after_momentum);
// }
// Case 2. fp32, fp32, fp32, No
// Case 2. fp32, fp32, fp32
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<3, float, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
SGDFunctor<float, float>(), wd, momentum, dampening,
lr, nesterov, first_run, wd_after_momentum, scale);
}
// Case 3. fp16, fp32, fp32, Yes
// Case 3. fp16, fp32, fp32
else if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Float && num_tensors == 4) {
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<4, at::Half, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
// Case 4. fp32, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float && num_tensors == 4) {
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<4, float, float>(), wd, momentum,
weight_type == at::ScalarType::Float && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<at::Half, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
} else {