mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[optim] refactor fused sgd (#1134)
This commit is contained in:
@@ -28,10 +28,10 @@
|
||||
* first run : necessary for proper momentum handling & init
|
||||
* wd_after_momentum : apply weight decay _after_ momentum instead of before
|
||||
**/
|
||||
template <int N, typename T_grad, typename T_weight>
|
||||
template <typename T_grad, typename T_weight>
|
||||
struct SGDFunctor {
|
||||
__device__ __forceinline__ void operator()(
|
||||
int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl,
|
||||
int chunk_size, volatile int *noop_gmem, TensorListMetadata<3> &tl,
|
||||
float wd, float momentum, float dampening, float lr, bool nesterov,
|
||||
bool first_run, bool wd_after_momentum, float scale) {
|
||||
// Early exit if we don't need to do anything
|
||||
@@ -50,12 +50,6 @@ struct SGDFunctor {
|
||||
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
|
||||
mom_in += chunk_idx * chunk_size;
|
||||
|
||||
at::Half *model_weights_out = nullptr;
|
||||
if (N == 4) {
|
||||
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
|
||||
model_weights_out += chunk_idx * chunk_size;
|
||||
}
|
||||
|
||||
n -= chunk_idx * chunk_size;
|
||||
|
||||
// Non-divergent exit condition for the __syncthreads
|
||||
@@ -110,10 +104,6 @@ struct SGDFunctor {
|
||||
// adjust the weight and write out
|
||||
weight_in[i] += (-lr * incoming_grads[ii]);
|
||||
|
||||
// if necessary, write out an fp16 copy of the weights
|
||||
if (N == 4)
|
||||
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
|
||||
|
||||
// also write out the new momentum
|
||||
if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
|
||||
}
|
||||
@@ -131,20 +121,14 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
||||
auto grad_type = tensor_lists[0][0].scalar_type();
|
||||
auto weight_type = tensor_lists[1][0].scalar_type();
|
||||
|
||||
if (num_tensors == 4)
|
||||
for (int i = 0; i < tensor_lists[3].size(); i++)
|
||||
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
|
||||
"Additional output tensors should always be fp16.");
|
||||
|
||||
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
|
||||
"expected noop flag to be on the same device as tensors");
|
||||
|
||||
// We have 3 possibilities to handle here, in terms of
|
||||
// grad_type, param_type, momentum_type, requires_fp16_copy
|
||||
// 1. fp16, fp16, fp16, No
|
||||
// 2. fp32, fp32, fp32, No
|
||||
// 3. fp16, fp32, fp32, Yes
|
||||
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case
|
||||
// grad_type, param_type, momentum_type
|
||||
// 1. fp16, fp16, fp16
|
||||
// 2. fp32, fp32, fp32
|
||||
// 3. fp16, fp32, fp32
|
||||
// It's easier to hardcode these possibilities than to use
|
||||
// switches etc. to handle the cross-product of cases where
|
||||
// we don't want the majority of them.
|
||||
@@ -153,49 +137,22 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
||||
if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Half && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<3, at::Half, at::Half>(), wd, momentum,
|
||||
SGDFunctor<at::Half, at::Half>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 2. fp16, fp32, fp32, No
|
||||
// else if (grad_type == at::ScalarType::Half &&
|
||||
// weight_type == at::ScalarType::Float &&
|
||||
// num_tensors == 3) {
|
||||
// multi_tensor_apply<3>(
|
||||
// BLOCK_SIZE,
|
||||
// chunk_size,
|
||||
// noop_flag,
|
||||
// tensor_lists,
|
||||
// SGDFunctor<3, at::Half, float>(),
|
||||
// wd,
|
||||
// momentum,
|
||||
// dampening,
|
||||
// lr,
|
||||
// nesterov,
|
||||
// first_run,
|
||||
// wd_after_momentum);
|
||||
// }
|
||||
// Case 2. fp32, fp32, fp32, No
|
||||
// Case 2. fp32, fp32, fp32
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<3, float, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
SGDFunctor<float, float>(), wd, momentum, dampening,
|
||||
lr, nesterov, first_run, wd_after_momentum, scale);
|
||||
}
|
||||
// Case 3. fp16, fp32, fp32, Yes
|
||||
// Case 3. fp16, fp32, fp32
|
||||
else if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 4) {
|
||||
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<4, at::Half, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 4. fp32, fp32, fp32, Yes
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 4) {
|
||||
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<4, float, float>(), wd, momentum,
|
||||
weight_type == at::ScalarType::Float && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<at::Half, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
} else {
|
||||
|
Reference in New Issue
Block a user