mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 05:01:44 +00:00
[Feature] Add document retrieval QA (#5020)
* add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
This commit is contained in:
125
applications/ColossalQA/colossalqa/local/colossalcloud_llm.py
Normal file
125
applications/ColossalQA/colossalqa/local/colossalcloud_llm.py
Normal file
@@ -0,0 +1,125 @@
|
||||
"""
|
||||
LLM wrapper for LLMs running on ColossalCloud Platform
|
||||
|
||||
Usage:
|
||||
|
||||
os.environ['URL'] = ""
|
||||
os.environ['HOST'] = ""
|
||||
|
||||
gen_config = {
|
||||
'max_new_tokens': 100,
|
||||
# 'top_k': 2,
|
||||
'top_p': 0.9,
|
||||
'temperature': 0.5,
|
||||
'repetition_penalty': 2,
|
||||
}
|
||||
|
||||
llm = ColossalCloudLLM(n=1)
|
||||
llm.set_auth_config()
|
||||
resp = llm(prompt='What do you call a three-ton kangaroo?', **gen_config)
|
||||
print(resp) # super-heavyweight awesome-natured yawning Australian creature!
|
||||
|
||||
"""
|
||||
import json
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class ColossalCloudLLM(LLM):
|
||||
"""
|
||||
A custom LLM class that integrates LLMs running on the ColossalCloud Platform
|
||||
|
||||
"""
|
||||
n: int
|
||||
gen_config: dict = None
|
||||
auth_config: dict = None
|
||||
valid_gen_para: list = ['max_new_tokens', 'top_k',
|
||||
'top_p', 'temperature', 'repetition_penalty']
|
||||
|
||||
def __init__(self, gen_config=None, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
gen_config: config for generation,
|
||||
max_new_tokens: 50 by default
|
||||
top_k: (1, vocab_size)
|
||||
top_p: (0, 1) if not None
|
||||
temperature: (0, inf) if not None
|
||||
repetition_penalty: (1, inf) if not None
|
||||
"""
|
||||
super(ColossalCloudLLM, self).__init__(**kwargs)
|
||||
if gen_config is None:
|
||||
self.gen_config = {"max_new_tokens": 50}
|
||||
else:
|
||||
assert "max_new_tokens" in gen_config, "max_new_tokens is a compulsory key in the gen config"
|
||||
self.gen_config = gen_config
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return 'ColossalCloudLLM'
|
||||
|
||||
def set_auth_config(self, **kwargs):
|
||||
url = get_from_dict_or_env(kwargs, "url", "URL")
|
||||
host = get_from_dict_or_env(kwargs, "host", "HOST")
|
||||
|
||||
auth_config = {}
|
||||
auth_config['endpoint'] = url
|
||||
auth_config['Host'] = host
|
||||
self.auth_config = auth_config
|
||||
|
||||
def _call(self, prompt: str, stop=None, **kwargs: Any) -> str:
|
||||
"""
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of strings to stop generation when encountered
|
||||
|
||||
Returns:
|
||||
The string generated by the model
|
||||
"""
|
||||
# Update the generation arguments
|
||||
for key, value in kwargs.items():
|
||||
if key not in self.valid_gen_para:
|
||||
raise KeyError(f"Invalid generation parameter: '{key}'. Valid keys are: {', '.join(self.valid_gen_para)}")
|
||||
if key in self.gen_config:
|
||||
self.gen_config[key] = value
|
||||
|
||||
resp_text = self.text_completion(prompt, self.gen_config, self.auth_config)
|
||||
# TODO: This may cause excessive tokens count
|
||||
if stop is not None:
|
||||
for stopping_words in stop:
|
||||
if stopping_words in resp_text:
|
||||
resp_text = resp_text.split(stopping_words)[0]
|
||||
return resp_text
|
||||
|
||||
|
||||
def text_completion(self, prompt, gen_config, auth_config):
|
||||
# Complusory Parameters
|
||||
endpoint = auth_config.pop('endpoint')
|
||||
max_new_tokens = gen_config.pop('max_new_tokens')
|
||||
# Optional Parameters
|
||||
optional_params = ['top_k', 'top_p', 'temperature', 'repetition_penalty'] # Self.optional
|
||||
gen_config = {key: gen_config[key] for key in optional_params if key in gen_config}
|
||||
# Define the data payload
|
||||
data = {
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"history": [
|
||||
{"instruction": prompt, "response": ""}
|
||||
],
|
||||
**gen_config
|
||||
}
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
**auth_config # 'Host',
|
||||
}
|
||||
# Make the POST request
|
||||
response = requests.post(endpoint, headers=headers, data=json.dumps(data))
|
||||
response.raise_for_status() # raise error if return code is not 200(success)
|
||||
# Check the response
|
||||
return response.text
|
183
applications/ColossalQA/colossalqa/local/llm.py
Normal file
183
applications/ColossalQA/colossalqa/local/llm.py
Normal file
@@ -0,0 +1,183 @@
|
||||
"""
|
||||
API and LLM warpper class for running LLMs locally
|
||||
|
||||
Usage:
|
||||
|
||||
import os
|
||||
model_path = os.environ.get("ZH_MODEL_PATH")
|
||||
model_name = "chatglm2"
|
||||
colossal_api = ColossalAPI(model_name, model_path)
|
||||
llm = ColossalLLM(n=1, api=colossal_api)
|
||||
TEST_PROMPT_CHATGLM="续写文章:惊蛰一过,春寒加剧。先是料料峭峭,继而雨季开始,"
|
||||
logger.info(llm(TEST_PROMPT_CHATGLM, max_new_tokens=100), verbose=True)
|
||||
|
||||
"""
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
import torch
|
||||
from colossalqa.local.utils import get_response, post_http_request
|
||||
from colossalqa.mylogging import get_logger
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.base import LLM
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class ColossalAPI:
|
||||
"""
|
||||
API for calling LLM.generate
|
||||
"""
|
||||
|
||||
__instances = dict()
|
||||
|
||||
def __init__(self, model_type: str, model_path: str, ckpt_path: str = None) -> None:
|
||||
"""
|
||||
Configurate model
|
||||
"""
|
||||
if model_type + model_path + (ckpt_path or "") in ColossalAPI.__instances:
|
||||
return
|
||||
else:
|
||||
ColossalAPI.__instances[model_type + model_path + (ckpt_path or "")] = self
|
||||
self.model_type = model_type
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True)
|
||||
|
||||
if ckpt_path is not None:
|
||||
state_dict = torch.load(ckpt_path)
|
||||
self.model.load_state_dict(state_dict)
|
||||
self.model.to(torch.cuda.current_device())
|
||||
|
||||
# Configurate tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
self.model.eval()
|
||||
|
||||
@staticmethod
|
||||
def get_api(model_type: str, model_path: str, ckpt_path: str = None):
|
||||
if model_type + model_path + (ckpt_path or "") in ColossalAPI.__instances:
|
||||
return ColossalAPI.__instances[model_type + model_path + (ckpt_path or "")]
|
||||
else:
|
||||
return ColossalAPI(model_type, model_path, ckpt_path)
|
||||
|
||||
def generate(self, input: str, **kwargs) -> str:
|
||||
"""
|
||||
Generate response given the prompt
|
||||
Args:
|
||||
input: input string
|
||||
**kwargs: language model keyword type arguments, such as top_k, top_p, temperature, max_new_tokens...
|
||||
Returns:
|
||||
output: output string
|
||||
"""
|
||||
if self.model_type in ["chatglm", "chatglm2"]:
|
||||
inputs = {
|
||||
k: v.to(torch.cuda.current_device()) for k, v in self.tokenizer(input, return_tensors="pt").items()
|
||||
}
|
||||
else:
|
||||
inputs = {
|
||||
"input_ids": self.tokenizer(input, return_tensors="pt")["input_ids"].to(torch.cuda.current_device())
|
||||
}
|
||||
|
||||
output = self.model.generate(**inputs, **kwargs)
|
||||
output = output.cpu()
|
||||
prompt_len = inputs["input_ids"].size(1)
|
||||
response = output[0, prompt_len:]
|
||||
output = self.tokenizer.decode(response, skip_special_tokens=True)
|
||||
return output
|
||||
|
||||
|
||||
class VllmAPI:
|
||||
def __init__(self, host: str = "localhost", port: int = 8077) -> None:
|
||||
# Configurate api for model served through web
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.url = f"http://{self.host}:{self.port}/generate"
|
||||
|
||||
def generate(self, input: str, **kwargs):
|
||||
output = get_response(post_http_request(input, self.url, **kwargs))[0]
|
||||
return output[len(input) :]
|
||||
|
||||
|
||||
class ColossalLLM(LLM):
|
||||
"""
|
||||
Langchain LLM wrapper for a local LLM
|
||||
"""
|
||||
|
||||
n: int
|
||||
api: Any
|
||||
kwargs = {"max_new_tokens": 100}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "custom"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
logger.info(f"kwargs:{kwargs}\nstop:{stop}\nprompt:{prompt}", verbose=self.verbose)
|
||||
for k in self.kwargs:
|
||||
if k not in kwargs:
|
||||
kwargs[k] = self.kwargs[k]
|
||||
|
||||
generate_args = {k: kwargs[k] for k in kwargs if k not in ["stop", "n"]}
|
||||
out = self.api.generate(prompt, **generate_args)
|
||||
if isinstance(stop, list) and len(stop) != 0:
|
||||
for stopping_words in stop:
|
||||
if stopping_words in out:
|
||||
out = out.split(stopping_words)[0]
|
||||
logger.info(f"{prompt}{out}", verbose=self.verbose)
|
||||
return out
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, int]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
||||
|
||||
class VllmLLM(LLM):
|
||||
"""
|
||||
Langchain LLM wrapper for a local LLM
|
||||
"""
|
||||
|
||||
n: int
|
||||
api: Any
|
||||
kwargs = {"max_new_tokens": 100}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "custom"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
for k in self.kwargs:
|
||||
if k not in kwargs:
|
||||
kwargs[k] = self.kwargs[k]
|
||||
logger.info(f"kwargs:{kwargs}\nstop:{stop}\nprompt:{prompt}", verbose=self.verbose)
|
||||
generate_args = {k: kwargs[k] for k in kwargs if k in ["n", "max_tokens", "temperature", "stream"]}
|
||||
out = self.api.generate(prompt, **generate_args)
|
||||
if len(stop) != 0:
|
||||
for stopping_words in stop:
|
||||
if stopping_words in out:
|
||||
out = out.split(stopping_words)[0]
|
||||
logger.info(f"{prompt}{out}", verbose=self.verbose)
|
||||
return out
|
||||
|
||||
def set_host_port(self, host: str = "localhost", port: int = 8077, **kwargs) -> None:
|
||||
if "max_tokens" not in kwargs:
|
||||
kwargs["max_tokens"] = 100
|
||||
self.kwargs = kwargs
|
||||
self.api = VllmAPI(host=host, port=port)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, int]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
150
applications/ColossalQA/colossalqa/local/pangu_llm.py
Normal file
150
applications/ColossalQA/colossalqa/local/pangu_llm.py
Normal file
@@ -0,0 +1,150 @@
|
||||
"""
|
||||
LLM wrapper for Pangu
|
||||
|
||||
Usage:
|
||||
|
||||
# URL: “盘古大模型套件管理”->点击“服务管理”->“模型列表”->点击想要使用的模型的“复制路径”
|
||||
# USERNAME: 华为云控制台:“我的凭证”->“API凭证”下的“IAM用户名”,也就是你登录IAM账户的名字
|
||||
# PASSWORD: IAM用户的密码
|
||||
# DOMAIN_NAME: 华为云控制台:“我的凭证”->“API凭证”下的“用户名”,也就是公司管理IAM账户的总账户名
|
||||
|
||||
os.environ["URL"] = ""
|
||||
os.environ["URLNAME"] = ""
|
||||
os.environ["PASSWORD"] = ""
|
||||
os.environ["DOMAIN_NAME"] = ""
|
||||
|
||||
pg = Pangu(id=1)
|
||||
pg.set_auth_config()
|
||||
|
||||
res = pg('你是谁') # 您好,我是华为盘古大模型。我能够通过和您对话互动为您提供帮助。请问您有什么想问我的吗?
|
||||
"""
|
||||
|
||||
import http.client
|
||||
import json
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class Pangu(LLM):
|
||||
"""
|
||||
A custom LLM class that integrates pangu models
|
||||
|
||||
"""
|
||||
|
||||
n: int
|
||||
gen_config: dict = None
|
||||
auth_config: dict = None
|
||||
|
||||
def __init__(self, gen_config=None, **kwargs):
|
||||
super(Pangu, self).__init__(**kwargs)
|
||||
if gen_config is None:
|
||||
self.gen_config = {"user": "User", "max_tokens": 50, "temperature": 0.95, "n": 1}
|
||||
else:
|
||||
self.gen_config = gen_config
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "pangu"
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs) -> str:
|
||||
"""
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of strings to stop generation when encountered
|
||||
|
||||
Returns:
|
||||
The string generated by the model
|
||||
"""
|
||||
# Update the generation arguments
|
||||
for key, value in kwargs.items():
|
||||
if key in self.gen_config:
|
||||
self.gen_config[key] = value
|
||||
|
||||
response = self.text_completion(prompt, self.gen_config, self.auth_config)
|
||||
text = response["choices"][0]["text"]
|
||||
if stop is not None:
|
||||
for stopping_words in stop:
|
||||
if stopping_words in text:
|
||||
text = text.split(stopping_words)[0]
|
||||
return text
|
||||
|
||||
def set_auth_config(self, **kwargs):
|
||||
url = get_from_dict_or_env(kwargs, "url", "URL")
|
||||
username = get_from_dict_or_env(kwargs, "username", "USERNAME")
|
||||
password = get_from_dict_or_env(kwargs, "password", "PASSWORD")
|
||||
domain_name = get_from_dict_or_env(kwargs, "domain_name", "DOMAIN_NAME")
|
||||
|
||||
region = url.split(".")[1]
|
||||
auth_config = {}
|
||||
auth_config["endpoint"] = url[url.find("https://") + 8 : url.find(".com") + 4]
|
||||
auth_config["resource_path"] = url[url.find(".com") + 4 :]
|
||||
auth_config["auth_token"] = self.get_latest_auth_token(region, username, password, domain_name)
|
||||
self.auth_config = auth_config
|
||||
|
||||
def get_latest_auth_token(self, region, username, password, domain_name):
|
||||
url = f"https://iam.{region}.myhuaweicloud.com/v3/auth/tokens"
|
||||
payload = json.dumps(
|
||||
{
|
||||
"auth": {
|
||||
"identity": {
|
||||
"methods": ["password"],
|
||||
"password": {"user": {"name": username, "password": password, "domain": {"name": domain_name}}},
|
||||
},
|
||||
"scope": {"project": {"name": region}},
|
||||
}
|
||||
}
|
||||
)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
response = requests.request("POST", url, headers=headers, data=payload)
|
||||
return response.headers["X-Subject-Token"]
|
||||
|
||||
def text_completion(self, text, gen_config, auth_config):
|
||||
conn = http.client.HTTPSConnection(auth_config["endpoint"])
|
||||
payload = json.dumps(
|
||||
{
|
||||
"prompt": text,
|
||||
"user": gen_config["user"],
|
||||
"max_tokens": gen_config["max_tokens"],
|
||||
"temperature": gen_config["temperature"],
|
||||
"n": gen_config["n"],
|
||||
}
|
||||
)
|
||||
headers = {
|
||||
"X-Auth-Token": auth_config["auth_token"],
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
conn.request("POST", auth_config["resource_path"], payload, headers)
|
||||
res = conn.getresponse()
|
||||
data = res.read()
|
||||
data = json.loads(data.decode("utf-8"))
|
||||
return data
|
||||
|
||||
def chat_model(self, messages, gen_config, auth_config):
|
||||
conn = http.client.HTTPSConnection(auth_config["endpoint"])
|
||||
payload = json.dumps(
|
||||
{
|
||||
"messages": messages,
|
||||
"user": gen_config["user"],
|
||||
"max_tokens": gen_config["max_tokens"],
|
||||
"temperature": gen_config["temperature"],
|
||||
"n": gen_config["n"],
|
||||
}
|
||||
)
|
||||
headers = {
|
||||
"X-Auth-Token": auth_config["auth_token"],
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
conn.request("POST", auth_config["resource_path"], payload, headers)
|
||||
res = conn.getresponse()
|
||||
data = res.read()
|
||||
data = json.loads(data.decode("utf-8"))
|
||||
return data
|
29
applications/ColossalQA/colossalqa/local/utils.py
Normal file
29
applications/ColossalQA/colossalqa/local/utils.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Generation utilities
|
||||
"""
|
||||
import json
|
||||
from typing import List
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
def post_http_request(
|
||||
prompt: str, api_url: str, n: int = 1, max_tokens: int = 100, temperature: float = 0.0, stream: bool = False
|
||||
) -> requests.Response:
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"n": 1,
|
||||
"use_beam_search": False,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
"stream": stream,
|
||||
}
|
||||
response = requests.post(api_url, headers=headers, json=pload, stream=True, timeout=3)
|
||||
return response
|
||||
|
||||
|
||||
def get_response(response: requests.Response) -> List[str]:
|
||||
data = json.loads(response.content)
|
||||
output = data["text"]
|
||||
return output
|
Reference in New Issue
Block a user