mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[Feature] Add document retrieval QA (#5020)
* add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
This commit is contained in:
183
applications/ColossalQA/colossalqa/local/llm.py
Normal file
183
applications/ColossalQA/colossalqa/local/llm.py
Normal file
@@ -0,0 +1,183 @@
|
||||
"""
|
||||
API and LLM warpper class for running LLMs locally
|
||||
|
||||
Usage:
|
||||
|
||||
import os
|
||||
model_path = os.environ.get("ZH_MODEL_PATH")
|
||||
model_name = "chatglm2"
|
||||
colossal_api = ColossalAPI(model_name, model_path)
|
||||
llm = ColossalLLM(n=1, api=colossal_api)
|
||||
TEST_PROMPT_CHATGLM="续写文章:惊蛰一过,春寒加剧。先是料料峭峭,继而雨季开始,"
|
||||
logger.info(llm(TEST_PROMPT_CHATGLM, max_new_tokens=100), verbose=True)
|
||||
|
||||
"""
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
import torch
|
||||
from colossalqa.local.utils import get_response, post_http_request
|
||||
from colossalqa.mylogging import get_logger
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.base import LLM
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class ColossalAPI:
|
||||
"""
|
||||
API for calling LLM.generate
|
||||
"""
|
||||
|
||||
__instances = dict()
|
||||
|
||||
def __init__(self, model_type: str, model_path: str, ckpt_path: str = None) -> None:
|
||||
"""
|
||||
Configurate model
|
||||
"""
|
||||
if model_type + model_path + (ckpt_path or "") in ColossalAPI.__instances:
|
||||
return
|
||||
else:
|
||||
ColossalAPI.__instances[model_type + model_path + (ckpt_path or "")] = self
|
||||
self.model_type = model_type
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True)
|
||||
|
||||
if ckpt_path is not None:
|
||||
state_dict = torch.load(ckpt_path)
|
||||
self.model.load_state_dict(state_dict)
|
||||
self.model.to(torch.cuda.current_device())
|
||||
|
||||
# Configurate tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
self.model.eval()
|
||||
|
||||
@staticmethod
|
||||
def get_api(model_type: str, model_path: str, ckpt_path: str = None):
|
||||
if model_type + model_path + (ckpt_path or "") in ColossalAPI.__instances:
|
||||
return ColossalAPI.__instances[model_type + model_path + (ckpt_path or "")]
|
||||
else:
|
||||
return ColossalAPI(model_type, model_path, ckpt_path)
|
||||
|
||||
def generate(self, input: str, **kwargs) -> str:
|
||||
"""
|
||||
Generate response given the prompt
|
||||
Args:
|
||||
input: input string
|
||||
**kwargs: language model keyword type arguments, such as top_k, top_p, temperature, max_new_tokens...
|
||||
Returns:
|
||||
output: output string
|
||||
"""
|
||||
if self.model_type in ["chatglm", "chatglm2"]:
|
||||
inputs = {
|
||||
k: v.to(torch.cuda.current_device()) for k, v in self.tokenizer(input, return_tensors="pt").items()
|
||||
}
|
||||
else:
|
||||
inputs = {
|
||||
"input_ids": self.tokenizer(input, return_tensors="pt")["input_ids"].to(torch.cuda.current_device())
|
||||
}
|
||||
|
||||
output = self.model.generate(**inputs, **kwargs)
|
||||
output = output.cpu()
|
||||
prompt_len = inputs["input_ids"].size(1)
|
||||
response = output[0, prompt_len:]
|
||||
output = self.tokenizer.decode(response, skip_special_tokens=True)
|
||||
return output
|
||||
|
||||
|
||||
class VllmAPI:
|
||||
def __init__(self, host: str = "localhost", port: int = 8077) -> None:
|
||||
# Configurate api for model served through web
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.url = f"http://{self.host}:{self.port}/generate"
|
||||
|
||||
def generate(self, input: str, **kwargs):
|
||||
output = get_response(post_http_request(input, self.url, **kwargs))[0]
|
||||
return output[len(input) :]
|
||||
|
||||
|
||||
class ColossalLLM(LLM):
|
||||
"""
|
||||
Langchain LLM wrapper for a local LLM
|
||||
"""
|
||||
|
||||
n: int
|
||||
api: Any
|
||||
kwargs = {"max_new_tokens": 100}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "custom"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
logger.info(f"kwargs:{kwargs}\nstop:{stop}\nprompt:{prompt}", verbose=self.verbose)
|
||||
for k in self.kwargs:
|
||||
if k not in kwargs:
|
||||
kwargs[k] = self.kwargs[k]
|
||||
|
||||
generate_args = {k: kwargs[k] for k in kwargs if k not in ["stop", "n"]}
|
||||
out = self.api.generate(prompt, **generate_args)
|
||||
if isinstance(stop, list) and len(stop) != 0:
|
||||
for stopping_words in stop:
|
||||
if stopping_words in out:
|
||||
out = out.split(stopping_words)[0]
|
||||
logger.info(f"{prompt}{out}", verbose=self.verbose)
|
||||
return out
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, int]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
||||
|
||||
class VllmLLM(LLM):
|
||||
"""
|
||||
Langchain LLM wrapper for a local LLM
|
||||
"""
|
||||
|
||||
n: int
|
||||
api: Any
|
||||
kwargs = {"max_new_tokens": 100}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "custom"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
for k in self.kwargs:
|
||||
if k not in kwargs:
|
||||
kwargs[k] = self.kwargs[k]
|
||||
logger.info(f"kwargs:{kwargs}\nstop:{stop}\nprompt:{prompt}", verbose=self.verbose)
|
||||
generate_args = {k: kwargs[k] for k in kwargs if k in ["n", "max_tokens", "temperature", "stream"]}
|
||||
out = self.api.generate(prompt, **generate_args)
|
||||
if len(stop) != 0:
|
||||
for stopping_words in stop:
|
||||
if stopping_words in out:
|
||||
out = out.split(stopping_words)[0]
|
||||
logger.info(f"{prompt}{out}", verbose=self.verbose)
|
||||
return out
|
||||
|
||||
def set_host_port(self, host: str = "localhost", port: int = 8077, **kwargs) -> None:
|
||||
if "max_tokens" not in kwargs:
|
||||
kwargs["max_tokens"] = 100
|
||||
self.kwargs = kwargs
|
||||
self.api = VllmAPI(host=host, port=port)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, int]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
Reference in New Issue
Block a user