mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
[Feature] Add document retrieval QA (#5020)
* add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu>
This commit is contained in:
@@ -0,0 +1,138 @@
|
||||
"""
|
||||
Multilingual retrieval based conversation system
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
from colossalqa.data_loader.document_loader import DocumentLoader
|
||||
from colossalqa.mylogging import get_logger
|
||||
from colossalqa.retrieval_conversation_en import EnglishRetrievalConversation
|
||||
from colossalqa.retrieval_conversation_zh import ChineseRetrievalConversation
|
||||
from colossalqa.retriever import CustomRetriever
|
||||
from colossalqa.text_splitter import ChineseTextSplitter
|
||||
from colossalqa.utils import detect_lang_naive
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class UniversalRetrievalConversation:
|
||||
"""
|
||||
Wrapper class for bilingual retrieval conversation system
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_model_path: str = "moka-ai/m3e-base",
|
||||
embedding_model_device: str = "cpu",
|
||||
zh_model_path: str = None,
|
||||
zh_model_name: str = None,
|
||||
en_model_path: str = None,
|
||||
en_model_name: str = None,
|
||||
sql_file_path: str = None,
|
||||
files_zh: List[List[str]] = None,
|
||||
files_en: List[List[str]] = None,
|
||||
text_splitter_chunk_size=100,
|
||||
text_splitter_chunk_overlap=10,
|
||||
) -> None:
|
||||
"""
|
||||
Warpper for multilingual retrieval qa class (Chinese + English)
|
||||
Args:
|
||||
embedding_model_path: local or huggingface embedding model
|
||||
embedding_model_device:
|
||||
files_zh: [[file_path, name_of_file, separator],...] defines the files used as supporting documents for Chinese retrieval QA
|
||||
files_en: [[file_path, name_of_file, separator],...] defines the files used as supporting documents for English retrieval QA
|
||||
"""
|
||||
self.embedding = HuggingFaceEmbeddings(
|
||||
model_name=embedding_model_path,
|
||||
model_kwargs={"device": embedding_model_device},
|
||||
encode_kwargs={"normalize_embeddings": False},
|
||||
)
|
||||
print("Select files for constructing Chinese retriever")
|
||||
docs_zh = self.load_supporting_docs(
|
||||
files=files_zh,
|
||||
text_splitter=ChineseTextSplitter(
|
||||
chunk_size=text_splitter_chunk_size, chunk_overlap=text_splitter_chunk_overlap
|
||||
),
|
||||
)
|
||||
# Create retriever
|
||||
self.information_retriever_zh = CustomRetriever(
|
||||
k=3, sql_file_path=sql_file_path.replace(".db", "_zh.db"), verbose=True
|
||||
)
|
||||
self.information_retriever_zh.add_documents(
|
||||
docs=docs_zh, cleanup="incremental", mode="by_source", embedding=self.embedding
|
||||
)
|
||||
|
||||
print("Select files for constructing English retriever")
|
||||
docs_en = self.load_supporting_docs(
|
||||
files=files_en,
|
||||
text_splitter=RecursiveCharacterTextSplitter(
|
||||
chunk_size=text_splitter_chunk_size, chunk_overlap=text_splitter_chunk_overlap
|
||||
),
|
||||
)
|
||||
# Create retriever
|
||||
self.information_retriever_en = CustomRetriever(
|
||||
k=3, sql_file_path=sql_file_path.replace(".db", "_en.db"), verbose=True
|
||||
)
|
||||
self.information_retriever_en.add_documents(
|
||||
docs=docs_en, cleanup="incremental", mode="by_source", embedding=self.embedding
|
||||
)
|
||||
|
||||
self.chinese_retrieval_conversation = ChineseRetrievalConversation.from_retriever(
|
||||
self.information_retriever_zh, model_path=zh_model_path, model_name=zh_model_name
|
||||
)
|
||||
self.english_retrieval_conversation = EnglishRetrievalConversation.from_retriever(
|
||||
self.information_retriever_en, model_path=en_model_path, model_name=en_model_name
|
||||
)
|
||||
self.memory = None
|
||||
|
||||
def load_supporting_docs(self, files: List[List[str]] = None, text_splitter: TextSplitter = None):
|
||||
"""
|
||||
Load supporting documents, currently, all documents will be stored in one vector store
|
||||
"""
|
||||
documents = []
|
||||
if files:
|
||||
for file in files:
|
||||
retriever_data = DocumentLoader([[file["data_path"], file["name"]]]).all_data
|
||||
splits = text_splitter.split_documents(retriever_data)
|
||||
documents.extend(splits)
|
||||
else:
|
||||
while True:
|
||||
file = input("Select a file to load or press Enter to exit:")
|
||||
if file == "":
|
||||
break
|
||||
data_name = input("Enter a short description of the data:")
|
||||
separator = input(
|
||||
"Enter a separator to force separating text into chunks, if no separator is given, the defaut separator is '\\n\\n', press ENTER directly to skip:"
|
||||
)
|
||||
separator = separator if separator != "" else "\n\n"
|
||||
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data
|
||||
|
||||
# Split
|
||||
splits = text_splitter.split_documents(retriever_data)
|
||||
documents.extend(splits)
|
||||
return documents
|
||||
|
||||
def start_test_session(self):
|
||||
"""
|
||||
Simple multilingual session for testing purpose, with naive language selection mechanism
|
||||
"""
|
||||
while True:
|
||||
user_input = input("User: ")
|
||||
lang = detect_lang_naive(user_input)
|
||||
if "END" == user_input:
|
||||
print("Agent: Happy to chat with you :)")
|
||||
break
|
||||
agent_response = self.run(user_input, which_language=lang)
|
||||
print(f"Agent: {agent_response}")
|
||||
|
||||
def run(self, user_input: str, which_language=str):
|
||||
"""
|
||||
Generate the response given the user input and a str indicates the language requirement of the output string
|
||||
"""
|
||||
assert which_language in ["zh", "en"]
|
||||
if which_language == "zh":
|
||||
agent_response, self.memory = self.chinese_retrieval_conversation.run(user_input, self.memory)
|
||||
else:
|
||||
agent_response, self.memory = self.english_retrieval_conversation.run(user_input, self.memory)
|
||||
return agent_response.split("\n")[0]
|
Reference in New Issue
Block a user