mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-29 21:49:54 +00:00
[npu] add npu support for gemini and zero (#5067)
* [npu] setup device utils (#5047) * [npu] add npu device support * [npu] support low level zero * [test] update npu zero plugin test * [hotfix] fix import * [test] recover tests * [npu] gemini support npu (#5052) * [npu] refactor device utils * [gemini] support npu * [example] llama2+gemini support npu * [kernel] add arm cpu adam kernel (#5065) * [kernel] add arm cpu adam * [optim] update adam optimizer * [kernel] arm cpu adam remove bf16 support
This commit is contained in:
@@ -7,7 +7,7 @@ from .common import (
|
||||
is_ddp_ignored,
|
||||
set_seed,
|
||||
)
|
||||
from .cuda import empty_cache, get_current_device, set_device, set_to_cuda, synchronize
|
||||
from .device import IS_NPU_AVAILABLE, empty_cache, get_current_device, set_device, set_to_cuda, synchronize
|
||||
from .multi_tensor_apply import multi_tensor_applier
|
||||
from .tensor_detector import TensorDetector
|
||||
from .timer import MultiTimer, Timer
|
||||
@@ -29,4 +29,5 @@ __all__ = [
|
||||
"set_seed",
|
||||
"is_ddp_ignored",
|
||||
"set_device",
|
||||
"IS_NPU_AVAILABLE",
|
||||
]
|
||||
|
||||
@@ -1,56 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
def set_to_cuda(models):
|
||||
"""Send model to gpu.
|
||||
|
||||
:param models: nn.module or a list of module
|
||||
"""
|
||||
if isinstance(models, list) and len(models) > 1:
|
||||
ret = []
|
||||
for model in models:
|
||||
ret.append(model.to(get_current_device()))
|
||||
return ret
|
||||
elif isinstance(models, list):
|
||||
return models[0].to(get_current_device())
|
||||
else:
|
||||
return models.to(get_current_device())
|
||||
|
||||
|
||||
def get_current_device() -> torch.device:
|
||||
"""
|
||||
Returns currently selected device (gpu/cpu).
|
||||
If cuda available, return gpu, otherwise return cpu.
|
||||
"""
|
||||
if torch.cuda.is_available():
|
||||
return torch.device(f"cuda:{torch.cuda.current_device()}")
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
|
||||
def synchronize():
|
||||
"""Similar to cuda.synchronize().
|
||||
Waits for all kernels in all streams on a CUDA device to complete.
|
||||
"""
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
def empty_cache():
|
||||
"""Similar to cuda.empty_cache()
|
||||
Releases all unoccupied cached memory currently held by the caching allocator.
|
||||
"""
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def set_device(index: Optional[int] = None) -> None:
|
||||
if index is None:
|
||||
index = dist.get_rank() % torch.cuda.device_count()
|
||||
torch.cuda.set_device(index)
|
||||
207
colossalai/utils/device.py
Normal file
207
colossalai/utils/device.py
Normal file
@@ -0,0 +1,207 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
IS_NPU_AVAILABLE: bool = False
|
||||
try:
|
||||
import torch_npu # noqa
|
||||
|
||||
IS_NPU_AVAILABLE = torch.npu.is_available()
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
def set_to_cuda(models):
|
||||
"""Send model to gpu.
|
||||
|
||||
:param models: nn.module or a list of module
|
||||
"""
|
||||
if isinstance(models, list) and len(models) > 1:
|
||||
ret = []
|
||||
for model in models:
|
||||
ret.append(model.to(get_current_device()))
|
||||
return ret
|
||||
elif isinstance(models, list):
|
||||
return models[0].to(get_current_device())
|
||||
else:
|
||||
return models.to(get_current_device())
|
||||
|
||||
|
||||
def get_current_device() -> torch.device:
|
||||
"""
|
||||
Returns currently selected device (gpu/cpu).
|
||||
If cuda available, return gpu, otherwise return cpu.
|
||||
"""
|
||||
if torch.cuda.is_available():
|
||||
return torch.device(f"cuda:{torch.cuda.current_device()}")
|
||||
elif IS_NPU_AVAILABLE:
|
||||
return torch.device(f"npu:{torch.npu.current_device()}")
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
|
||||
def _dispatch_device_func(fn_name: str, *args, **kwargs):
|
||||
if torch.cuda.is_available():
|
||||
return getattr(torch.cuda, fn_name)(*args, **kwargs)
|
||||
elif IS_NPU_AVAILABLE:
|
||||
return getattr(torch.npu, fn_name)(*args, **kwargs)
|
||||
else:
|
||||
raise RuntimeError("No device available")
|
||||
|
||||
|
||||
# device semantics
|
||||
|
||||
|
||||
def can_device_access_peer(device, peer_device) -> bool:
|
||||
return _dispatch_device_func("can_device_access_peer", device, peer_device)
|
||||
|
||||
|
||||
def current_device() -> int:
|
||||
return _dispatch_device_func("current_device")
|
||||
|
||||
|
||||
def current_stream(device=None):
|
||||
return _dispatch_device_func("current_stream", device)
|
||||
|
||||
|
||||
def default_stream(device=None):
|
||||
return _dispatch_device_func("default_stream", device)
|
||||
|
||||
|
||||
def device_count() -> int:
|
||||
return _dispatch_device_func("device_count")
|
||||
|
||||
|
||||
def get_device_capability(device=None) -> Tuple[int, int]:
|
||||
return _dispatch_device_func("get_device_capability", device)
|
||||
|
||||
|
||||
def get_device_name(device=None) -> str:
|
||||
return _dispatch_device_func("get_device_name", device)
|
||||
|
||||
|
||||
def get_device_properties(device):
|
||||
return _dispatch_device_func("get_device_properties", device)
|
||||
|
||||
|
||||
def set_device(index: Optional[int] = None) -> None:
|
||||
if index is None:
|
||||
index = dist.get_rank() % device_count()
|
||||
_dispatch_device_func("set_device", index)
|
||||
|
||||
|
||||
def set_stream(stream_):
|
||||
return _dispatch_device_func("set_stream", stream_)
|
||||
|
||||
|
||||
def stream(stream_):
|
||||
return _dispatch_device_func("stream", stream_)
|
||||
|
||||
|
||||
def synchronize():
|
||||
return _dispatch_device_func("synchronize")
|
||||
|
||||
|
||||
def utilization(device=None) -> int:
|
||||
return _dispatch_device_func("utilization", device)
|
||||
|
||||
|
||||
# random number generator
|
||||
|
||||
|
||||
def get_rng_state(device="cuda") -> torch.Tensor:
|
||||
return _dispatch_device_func("get_rng_state", device)
|
||||
|
||||
|
||||
def get_rng_state_all() -> List[torch.Tensor]:
|
||||
return _dispatch_device_func("get_rng_state_all")
|
||||
|
||||
|
||||
def set_rng_state(new_state: torch.ByteTensor, device="cuda") -> None:
|
||||
return _dispatch_device_func("set_rng_state", new_state, device)
|
||||
|
||||
|
||||
def set_rng_state_all(new_states: List[torch.ByteTensor]) -> None:
|
||||
return _dispatch_device_func("set_rng_state_all", new_states)
|
||||
|
||||
|
||||
def manual_seed(seed: int) -> None:
|
||||
return _dispatch_device_func("manual_seed", seed)
|
||||
|
||||
|
||||
def manual_seed_all(seed: int) -> None:
|
||||
return _dispatch_device_func("manual_seed_all", seed)
|
||||
|
||||
|
||||
def seed() -> None:
|
||||
return _dispatch_device_func("seed")
|
||||
|
||||
|
||||
def seed_all() -> None:
|
||||
return _dispatch_device_func("seed_all")
|
||||
|
||||
|
||||
def initial_seed() -> int:
|
||||
return _dispatch_device_func("initial_seed")
|
||||
|
||||
|
||||
# streams and events
|
||||
|
||||
|
||||
def Stream(device=None, priority=0, **kwargs):
|
||||
return _dispatch_device_func("Stream", device, priority, **kwargs)
|
||||
|
||||
|
||||
def Event(enable_timing: bool = False, blocking: bool = False, interprocess: bool = False):
|
||||
return _dispatch_device_func("Event", enable_timing, blocking, interprocess)
|
||||
|
||||
|
||||
# memory management
|
||||
|
||||
|
||||
def empty_cache() -> None:
|
||||
return _dispatch_device_func("empty_cache")
|
||||
|
||||
|
||||
def memory_stats(device=None) -> Dict[str, Any]:
|
||||
return _dispatch_device_func("memory_stats", device)
|
||||
|
||||
|
||||
def memory_summary(device=None, abbreviated=False) -> str:
|
||||
return _dispatch_device_func("memory_summary", device, abbreviated)
|
||||
|
||||
|
||||
def memory_snapshot():
|
||||
return _dispatch_device_func("memory_snapshot")
|
||||
|
||||
|
||||
def memory_allocated(device=None) -> int:
|
||||
return _dispatch_device_func("memory_allocated", device)
|
||||
|
||||
|
||||
def max_memory_allocated(device=None) -> int:
|
||||
return _dispatch_device_func("max_memory_allocated", device)
|
||||
|
||||
|
||||
def reset_max_memory_allocated(device=None) -> None:
|
||||
return _dispatch_device_func("reset_max_memory_allocated", device)
|
||||
|
||||
|
||||
def memory_reserved(device=None) -> int:
|
||||
return _dispatch_device_func("memory_reserved", device)
|
||||
|
||||
|
||||
def max_memory_reserved(device=None) -> int:
|
||||
return _dispatch_device_func("max_memory_reserved", device)
|
||||
|
||||
|
||||
def set_per_process_memory_fraction(fraction: float, device=None) -> None:
|
||||
return _dispatch_device_func("set_per_process_memory_fraction", fraction, device)
|
||||
|
||||
|
||||
def reset_peak_memory_stats(device=None) -> None:
|
||||
return _dispatch_device_func("reset_peak_memory_stats", device)
|
||||
@@ -3,7 +3,7 @@
|
||||
import time
|
||||
from typing import Tuple
|
||||
|
||||
from .cuda import synchronize
|
||||
from .device import synchronize
|
||||
|
||||
|
||||
class Timer:
|
||||
|
||||
Reference in New Issue
Block a user