mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
[Fix] resolve conflicts of rebasing feat/speculative-decoding (#5557)
- resolve conflicts of rebasing feat/speculative-decoding
This commit is contained in:
committed by
ocd_with_naming
parent
e1acb58423
commit
e60d430cf5
@@ -325,24 +325,29 @@ class InferenceEngine:
|
||||
List[Sequence]: finished sequences generated by one step.
|
||||
"""
|
||||
batch = self.request_handler.schedule() # prefill batch
|
||||
|
||||
assert batch.current_batch_size == 1, "Only support bsz 1 for speculative decoding for now."
|
||||
input_ids = batch.get_1D_inputs() # bsz 1 for drafter model
|
||||
|
||||
input_token_ids, output_tensor, input_meta_data = self.prepare_input(batch)
|
||||
|
||||
if input_meta_data.use_cuda_graph:
|
||||
model_executable = self.graph_runners[input_meta_data.batch_size]
|
||||
else:
|
||||
model_executable = self.model
|
||||
|
||||
# 1. Prefill small model (Drafter) - fill past kv cache for drafter model
|
||||
# NOTE For glide drafter models, we won't actually apply glide during prefill stage
|
||||
drafter_out = self.drafter.speculate(input_ids, 1, None)
|
||||
drafter_out = self.drafter.speculate(input_token_ids, 1, None)
|
||||
next_token_ids_spec = drafter_out.next_tokens
|
||||
drafter_past_key_values = drafter_out.past_key_values
|
||||
|
||||
# 2. Prefill main model (Verifier) - fill past kv cache for main model
|
||||
logits = self.model(batch, self.k_cahce, self.v_cache)
|
||||
logits = model_executable(input_token_ids, output_tensor, input_meta_data, self.k_cache, self.v_cache)
|
||||
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
|
||||
# append new inputs to the batch, temporarily
|
||||
batch.append_batch_tokens(next_tokens)
|
||||
self.request_handler.allocate_batch_spec_dec(batch, 1)
|
||||
already_allocated_kv_len = batch.seq_lengths[0].item()
|
||||
input_ids = batch.get_1D_inputs_spec_dec(1)
|
||||
input_token_ids = batch.get_1D_inputs_spec_dec(1)
|
||||
|
||||
finished_sequences = self.request_handler.update()
|
||||
|
||||
@@ -357,13 +362,13 @@ class InferenceEngine:
|
||||
if self.use_glide:
|
||||
glide_input = GlideInput(
|
||||
batch.get_block_table_tensor(),
|
||||
self.k_cahce[-1], # use kv cahces of the last layer
|
||||
self.k_cache[-1], # use kv cahces of the last layer
|
||||
self.v_cache[-1],
|
||||
batch.get_sequence_lengths(),
|
||||
)
|
||||
|
||||
drafter_out = self.drafter.speculate(
|
||||
input_ids,
|
||||
input_token_ids,
|
||||
self.n_spec_tokens,
|
||||
drafter_past_key_values,
|
||||
glide_input=glide_input,
|
||||
@@ -382,7 +387,9 @@ class InferenceEngine:
|
||||
# 4. Decoding - Main model verifies `n` tokens in parallel
|
||||
if drafter_spec_length < batch.num_tokens_to_verify:
|
||||
batch.set_use_spec_dec(num_tokens_to_verify=drafter_spec_length)
|
||||
logits = self.model(batch, self.k_cahce, self.v_cache)
|
||||
input_token_ids, output_tensor, input_meta_data = self.prepare_input(batch)
|
||||
logits = model_executable(input_token_ids, output_tensor, input_meta_data, self.k_cache, self.v_cache)
|
||||
|
||||
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
|
||||
|
||||
# 5. Compare and process the results
|
||||
@@ -402,7 +409,7 @@ class InferenceEngine:
|
||||
|
||||
# prepare inputs for the next round of speculation
|
||||
n = 1 if n_matches < drafter_spec_length else 2
|
||||
input_ids = batch.get_1D_inputs_spec_dec(n)
|
||||
input_token_ids = batch.get_1D_inputs_spec_dec(n)
|
||||
|
||||
self.request_handler.update_batch_finished(batch, generation_config=self.generation_config)
|
||||
finished_sequences = self.request_handler.update()
|
||||
@@ -564,18 +571,19 @@ class InferenceEngine:
|
||||
|
||||
def prepare_input(self, batch: BatchBucket) -> Tuple[torch.Tensor, torch.Tensor, InputMetaData]:
|
||||
input_ids = batch.get_1D_inputs()
|
||||
|
||||
sequence_lengths = batch.get_sequence_lengths()
|
||||
|
||||
if batch.is_prompts:
|
||||
output_tensor = torch.zeros(
|
||||
(sequence_lengths.sum().item(), batch.num_heads * batch.head_dim),
|
||||
dtype=batch.dtype,
|
||||
device=batch.device,
|
||||
)
|
||||
n_tokens = sequence_lengths.sum().item()
|
||||
else:
|
||||
output_tensor = torch.zeros(
|
||||
(batch.current_batch_size, batch.num_heads * batch.head_dim), dtype=batch.dtype, device=batch.device
|
||||
)
|
||||
n_tokens = batch.current_batch_size
|
||||
if batch.use_spec_dec:
|
||||
n_tokens = batch.num_tokens_to_verify + 1
|
||||
assert n_tokens == input_ids.size(0)
|
||||
n_tokens = n_tokens * batch.current_batch_size
|
||||
output_tensor = torch.zeros(
|
||||
(n_tokens, batch.num_heads * batch.head_dim), dtype=batch.dtype, device=batch.device
|
||||
)
|
||||
|
||||
# only when we have the graph for specific decoding batch size can we use the cuda graph for inference
|
||||
use_cuda_graph = False
|
||||
@@ -594,6 +602,8 @@ class InferenceEngine:
|
||||
kv_seq_len=sequence_lengths.max().item(),
|
||||
head_dim=batch.head_dim,
|
||||
dtype=batch.dtype,
|
||||
use_spec_dec=batch.use_spec_dec,
|
||||
num_tokens_to_verify=batch.num_tokens_to_verify,
|
||||
)
|
||||
|
||||
return input_ids, output_tensor, input_meta_data
|
||||
|
Reference in New Issue
Block a user