[shardformer, pipeline] add gradient_checkpointing_ratio and heterogenous shard policy for llama (#5508)

* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`

* feat: apply `GradientCheckpointConfig` to policy and llama_forward

* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager

* fix: add optional args for `distribute_layer` and `get_stage_index`

* fix: fix changed API calls

* test: update llama tests

* style: polish `GradientCheckpointConfig`

* fix: fix pipeline utils tests
This commit is contained in:
Wenhao Chen
2024-04-01 11:34:58 +08:00
committed by GitHub
parent df5e9c53cf
commit e614aa34f3
28 changed files with 396 additions and 213 deletions

View File

@@ -49,9 +49,9 @@ if HAS_LLAMA:
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
config = LlamaConfig(
num_hidden_layers=4,
hidden_size=128,
intermediate_size=256,
num_hidden_layers=8,
hidden_size=32,
intermediate_size=64,
num_attention_heads=4,
max_position_embeddings=128,
num_labels=16,

View File

@@ -1,4 +1,23 @@
import random
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.policies.t5 import T5BasePolicy
from colossalai.shardformer.shard.shard_config import ShardConfig
class _ShardConfig(ShardConfig):
def __post_init__(self):
pass
class _PipelineStageManager(PipelineStageManager):
def __init__(self):
self.is_interleave = False
self.num_layers_per_stage = None
@property
def num_stages(self):
return random.randint(5, 10)
def test_t5_pipeline_distribution():
@@ -10,7 +29,10 @@ def test_t5_pipeline_distribution():
"decoder_starting_stage": [1, 1, 2, 2, 3, 1, 5, 2],
}
stage_manager = _PipelineStageManager()
shard_config = _ShardConfig(pipeline_stage_manager=stage_manager)
policy = T5BasePolicy()
policy.set_shard_config(shard_config)
for i in range(num_test_cases):
_, decoder_starting_stage = policy.distribute_t5_layers(
test_dict["num_encoder_layers"][i],
@@ -35,7 +57,10 @@ def test_t5_pipeline_layers():
}
for i in range(num_test_cases):
stage_manager = _PipelineStageManager()
shard_config = _ShardConfig(pipeline_stage_manager=stage_manager)
policy = T5BasePolicy()
policy.set_shard_config(shard_config)
layers_per_stage, decoder_starting_stage = policy.distribute_t5_layers(
test_dict["num_encoder_layers"][i],
test_dict["num_decoder_layers"][i],

View File

@@ -1,4 +1,23 @@
import random
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.policies.whisper import WhisperPolicy
from colossalai.shardformer.shard.shard_config import ShardConfig
class _ShardConfig(ShardConfig):
def __post_init__(self):
pass
class _PipelineStageManager(PipelineStageManager):
def __init__(self):
self.is_interleave = False
self.num_layers_per_stage = None
@property
def num_stages(self):
return random.randint(5, 10)
def test_whisper_pipeline_distribution():
@@ -10,7 +29,10 @@ def test_whisper_pipeline_distribution():
"decoder_starting_stage": [1, 1, 2, 2, 3, 1, 5, 2],
}
stage_manager = _PipelineStageManager()
shard_config = _ShardConfig(pipeline_stage_manager=stage_manager)
policy = WhisperPolicy()
policy.set_shard_config(shard_config)
for i in range(num_test_cases):
_, decoder_starting_stage = policy.distribute_whisper_layers(
test_dict["num_encoder_layers"][i],
@@ -34,7 +56,10 @@ def test_whisper_pipeline_layers():
],
}
stage_manager = _PipelineStageManager()
shard_config = _ShardConfig(pipeline_stage_manager=stage_manager)
policy = WhisperPolicy()
policy.set_shard_config(shard_config)
for i in range(num_test_cases):
layers_per_stage, decoder_starting_stage = policy.distribute_whisper_layers(
test_dict["num_encoder_layers"][i],

View File

@@ -5,6 +5,7 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import PipelineGradientCheckpointConfig
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@@ -24,9 +25,13 @@ os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
enable_gradient_checkpointing = test_config.pop("enable_gradient_checkpointing", False)
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
model_fn, loss_fn, test_config
)
if enable_gradient_checkpointing:
org_model.gradient_checkpointing_enable()
sharded_model.unwrap().gradient_checkpointing_enable()
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
@@ -101,6 +106,8 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
"enable_gradient_checkpointing": True,
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(gradient_checkpointing_ratio=0.5),
},
{
"tp_size": 1,
@@ -108,6 +115,10 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
"num_microbatches": 4,
"use_lazy_init": False,
"precision": "fp32",
"enable_gradient_checkpointing": True,
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
num_stages=2, num_model_chunks=1, num_model_layers=8, num_ckpt_layers_per_stage=[4, 0]
),
},
{
"tp_size": 4,
@@ -189,6 +200,13 @@ def run_llama_test(test_config):
"precision": "fp16",
"zero_stage": 1,
"initial_scale": 1,
"enable_gradient_checkpointing": True,
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
num_stages=2,
num_model_chunks=2,
num_model_layers=8,
num_ckpt_layers_per_stage=[0, 1, 2, 2],
),
},
],
)