polish optimizer docstring (#619)

This commit is contained in:
ver217
2022-04-01 16:27:03 +08:00
committed by GitHub
parent 8432dc7080
commit e619a651fb
5 changed files with 65 additions and 82 deletions

View File

@@ -1,6 +1,5 @@
import torch
from colossalai.utils import multi_tensor_applier
from colossalai.registry import OPTIMIZERS
@@ -14,13 +13,14 @@ class HybridAdam(torch.optim.Optimizer):
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
Requires ColossalAI to be installed via ``pip install .``
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
@@ -43,8 +43,8 @@ class HybridAdam(torch.optim.Optimizer):
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
.. _Adam: A Method for Stochastic Optimization:
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
@@ -75,7 +75,7 @@ class HybridAdam(torch.optim.Optimizer):
import colossal_C
except ImportError:
raise ImportError('Please install colossalai from source code to use HybridAdam')
self.cpu_adam_op = cpu_adam
self.cpu_adam_op.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, simd_log)
@@ -131,14 +131,14 @@ class HybridAdam(torch.optim.Optimizer):
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
v_l.append(state['exp_avg_sq'])
else:
raise RuntimeError
if len(g_l) > 0:
adamw_mode = 1 if self.adamw_mode else 0
bias_correction = 1 if group['bias_correction'] else 0
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l,m_l, v_l],
group['lr'], group['betas'][0], group['betas'][1], group['eps'], group_step,
adamw_mode, bias_correction, group['weight_decay'])
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
group['betas'][0], group['betas'][1], group['eps'], group_step, adamw_mode,
bias_correction, group['weight_decay'])
return loss