[zero] adapt zero for unsharded parameters (#561)

* support existing sharded and unsharded parameters in zero

* add unitest for moe-zero model init

* polish moe gradient handler
This commit is contained in:
HELSON
2022-03-31 18:34:11 +08:00
committed by GitHub
parent 13ed4b6441
commit e6d50ec107
11 changed files with 211 additions and 70 deletions

View File

@@ -22,19 +22,14 @@ class MoeModel(nn.Module):
def __init__(self):
super().__init__()
self.proj1 = nn.Linear(4, 8)
self.proj1 = nn.Linear(4, 16)
expert_cls = nn.Linear
expert_args_dict = dict(in_features=8, out_features=8)
self.moe = MoeModule(dim_model=8,
num_experts=8,
noisy_policy='Jitter',
use_residual=True,
expert_cls=expert_cls,
**expert_args_dict)
self.proj2 = nn.Linear(8, 4)
expert_args_dict = dict(in_features=16, out_features=16)
self.moe = MoeModule(dim_model=16, num_experts=8, use_residual=True, expert_cls=expert_cls, **expert_args_dict)
self.proj2 = nn.Linear(16, 4)
def forward(self, x):
x = self.proj(x)
x = self.proj1(x)
x = self.moe(x)
x = self.proj2(x)
return x
@@ -75,6 +70,12 @@ def run_moe_zero_init(init_device_type, shard_strategy_class):
else:
assert param.colo_attr.sharded_data_tensor.is_sharded
# the parameters in moe experts is not replicated
if 'experts' in name:
assert not param.is_replicated
else:
assert param.is_replicated
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'

View File

@@ -0,0 +1,78 @@
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import parameterize, rerun_on_exception
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.context import MOE_CONTEXT
from colossalai.testing import assert_equal_in_group
from tests.test_zero_data_parallel.common import CONFIG, check_grads_padding, run_fwd_bwd
from tests.test_moe.test_moe_zero_init import MoeModel
@parameterize("enable_autocast", [False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_model_test(enable_autocast, shard_strategy_class):
shard_strategy = shard_strategy_class()
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
_, train_dataloader, _, _, criterion = get_components_func()
rm_torch_payload_on_the_fly = False
with ZeroInitContext(target_device=torch.cuda.current_device(),
shard_strategy=shard_strategy,
shard_param=True,
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
zero_model = MoeModel()
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.is_replicated:
assert_equal_in_group(p.data)
model = MoeModel().half()
col_model_deepcopy(zero_model, model)
model = model.cuda()
grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, enable_autocast)
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
grad_handler.handle_gradient()
check_grads_padding(model, zero_model, loose=True)
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
MOE_CONTEXT.reset_loss()
run_model_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_zero_model(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_model(world_size=2)

View File

@@ -91,15 +91,19 @@ def check_params(model, zero_model, loose=False):
def check_grads_padding(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
for (name, p), (zero_name, zero_p) in zip(model.named_parameters(), zero_model.named_parameters()):
# zero_grad = zero_p.grad.clone().to(p.device)
zero_grad = zero_p.colo_attr.saved_grad.payload.clone().to(p.device)
chunks = torch.flatten(p.grad).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
grad = chunks[rank].float()
if zero_grad.size(0) > grad.size(0):
zero_grad = zero_grad[:grad.size(0)]
if zero_p.colo_attr.param_is_sharded:
zero_grad = zero_p.colo_attr.saved_grad.payload.clone().to(p.device)
chunks = torch.flatten(p.grad).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
grad = chunks[rank].float()
if zero_grad.size(0) > grad.size(0):
zero_grad = zero_grad[:grad.size(0)]
else:
grad = p.grad
zero_grad = zero_p.colo_attr.saved_grad.payload
assert grad.dtype == zero_grad.dtype
assert allclose(grad, zero_grad, loose=loose), f'diff: {grad - zero_grad}'