[fx] add rules to linearize computation graphs for searching. (#1461)

* [fx] polish ckpt_test.

* [fx] add rules to linearize computation graphs for searching.

* [fx] remove chen_sqrt for sake of simplicity

* [fx] fix inconsistencies.
This commit is contained in:
Super Daniel
2022-08-17 14:47:12 +08:00
committed by GitHub
parent a7a3d55114
commit e7383f578b
3 changed files with 40 additions and 35 deletions

View File

@@ -1,5 +1,6 @@
from typing import Callable
import copy
import re
import torch
import torch.multiprocessing as mp
import torchvision.models as tm
@@ -7,7 +8,7 @@ from torch.fx import GraphModule
import colossalai
from colossalai.fx import ColoTracer
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.passes.algorithms import chen_greedy, chen_sqrtn
from colossalai.fx.passes.algorithms import chen_greedy
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
import pytest
@@ -20,7 +21,7 @@ except:
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
SOLVERS = [chen_greedy, chen_sqrtn]
SOLVERS = [chen_greedy]
def _is_activation_checkpoint_available(gm: GraphModule):
@@ -36,6 +37,16 @@ def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule):
return True
def _is_graph_linearized(gm: GraphModule):
code = gm.code
# find patterns like r' return output_1, output_2', which is not expected on a linearized graph
pattern = re.compile(r' return [a-zA-Z0-9_]+(, [a-zA-Z0-9_]+)+')
if pattern.findall(code):
return False
else:
return True
def check_backward_consistency(m: torch.nn.Module, gm: GraphModule, solver: Callable[[GraphModule], GraphModule],
model_cls: Callable[[], torch.nn.Module]):
criterion = torch.nn.MSELoss()
@@ -66,12 +77,13 @@ def _run_ckpt_solver(rank):
codegen = ActivationCheckpointCodeGen()
gm.graph.set_codegen(codegen)
gm = solver(gm)
assert _is_graph_linearized(gm), f"Solver {solver} did not solve {model_cls} in a linearized manner."
assert _is_activation_checkpoint_available(
gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints"
check_backward_consistency(m, gm, solver, model_cls)
gpc.destroy()
@pytest.mark.skip
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_ckpt_solver():
mp.spawn(_run_ckpt_solver, nprocs=1)
@@ -94,12 +106,13 @@ def _run_ckpt_solver_torch11(rank):
MetaInfoProp(gm).run(data)
gm.graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
gm = solver(gm)
assert _is_graph_linearized(gm), f"Solver {solver} did not solve {model_cls} in a linearized manner."
assert _is_activation_checkpoint_available(
gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints"
check_backward_consistency(m, gm, solver, model_cls)
gpc.destroy()
@pytest.mark.skip
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
def test_ckpt_solver_torch11():
mp.spawn(_run_ckpt_solver_torch11, nprocs=1)