[pipeline] All bert models (#4233)

* bloom policy

* llama pipeline forward and tests

* fix the output and attention_mask

* fix name

* bind argument to policy

* Revert "bloom policy"

This reverts commit 8dee68a0a2.

This policy should be revert and copied to feature/bloom

* revert the bloom changes

* cancel unneeded inputs

* gpt

* finish llama

* causal lm and sequence classification

* revision

* add pure pipeline test

* finish some bert models

* finish all bert models

* finish bert tests

* fix bugs

* fix bugs

* fix test pipeline

* fix data gen for qa

* update the set pipeline forward

* shared params

* fix bugs
This commit is contained in:
Jianghai
2023-07-17 16:12:20 +08:00
committed by Hongxin Liu
parent a14d352088
commit e7cc62d735
13 changed files with 988 additions and 144 deletions

View File

@@ -49,7 +49,6 @@ def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn,
# prepare input
data = data_gen_fn()
data = {k: v.cuda() for k, v in data.items()}
# switch to train mode
original_model.train()
sharded_model.train()

View File

@@ -0,0 +1,164 @@
import random
from contextlib import nullcontext
from typing import Any, Callable, Iterator, List, Optional, Tuple
import numpy as np
import pytest
import torch
import torch.distributed as dist
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.schedule import OneForwardOneBackwardSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, build_pipeline_model, run_forward
DP_AXIS, PP_AXIS, TP_AXIS = 0, 1, 2
class PipelineOptimizer(OptimizerWrapper):
def __init__(self, optim: Optimizer, model: Module):
super().__init__(optim)
params = set(model.parameters())
new_param_groups = []
for group in optim.param_groups:
params = [p for p in group['params'] if p in params]
new_param_groups.append({**group, 'params': params})
optim.__setstate__({'param_groups': new_param_groups})
# TODO: support amp
class PipelinedModel(ModelWrapper):
def __init__(self, module: Module, shard_config: ShardConfig, stage_manager: PipelineStageManager) -> None:
self.stage_manager = stage_manager
shardformer = ShardFormer(shard_config)
module, self.shared_params = shardformer.optimize(module)
self.shared_param_process_groups = []
super().__init__(module)
def prepare_dataloader(dataset, batch_size, shuffle=False, seed=1024, drop_last=False, pin_memory=False, num_workers=0):
sampler = DistributedSampler(
dataset,
#rank=self.pg_mesh.coordinate(DP_AXIS),
shuffle=shuffle)
# Deterministic dataloader
def seed_worker(worker_id):
worker_seed = seed
np.random.seed(worker_seed)
torch.manual_seed(worker_seed)
random.seed(worker_seed)
return DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
worker_init_fn=seed_worker,
drop_last=drop_last,
pin_memory=pin_memory,
num_workers=num_workers,
)
def execute_pipeline(
data_iter: Iterator,
model: PipelinedModel,
criterion: Callable[[Any, Any], torch.Tensor],
optimizer: PipelineOptimizer,
return_loss: bool = True,
return_outputs: bool = False,
schedule: OneForwardOneBackwardSchedule = None,
) -> dict:
# return loss or outputs if needed
outputs = schedule.forward_backward_step(model, optimizer, data_iter, criterion, return_loss, return_outputs)
return outputs
class data_iter():
def __getitem__(self, x):
return torch.randint(0, 100, (4, 128)).cuda()
def loss(x, y):
return (x[0].float().mean() - y[0].float().mean())
@parameterize('enable_fused_normalization', [False])
@parameterize('enable_tensor_parallelism', [False])
@parameterize('use_lazy_init', [False])
def run_llama_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
PP_DIM = 0
PP_SIZE = 2
RANK_TO_COORDINATE = {
0: (0, 0),
1: (0, 1),
2: (1, 0),
3: (1, 1),
}
PP_RANKS_IN_GROUP = {
0: [0, 1],
1: [0, 1],
2: [2, 3],
3: [2, 3],
}
from datasets import load_dataset
#dataset = load_dataset("open_subtitles", lang1="fi", lang2="hi")
pg_mesh = ProcessGroupMesh(PP_SIZE)
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
num_microbatches = 2
org_model = model_fn().cuda()
optimizer = torch.optim.AdamW(org_model.parameters(), lr=1e-3)
#dataloader=prepare_dataloader(dataset=dataset['train'],batch_size=4)
schedule = OneForwardOneBackwardSchedule(num_microbatches, stage_manager)
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
pipeline_stage_manager=stage_manager)
pipelined_model = PipelinedModel(org_model, shard_config, stage_manager)
pp_optimizer = PipelineOptimizer(optimizer, pipelined_model)
data_it = iter(data_iter())
results = execute_pipeline(data_it, pipelined_model, loss, pp_optimizer, schedule=schedule)
if stage_manager.is_last_stage():
assert results['loss'] is not None
assert results['outputs'] is None
torch.cuda.empty_cache()
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_llama_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama():
spawn(check_llama, 2)
if __name__ == "__main__":
test_llama()

View File

@@ -45,25 +45,37 @@ def run_bert_test(enable_fused_normalization, enable_tensor_parallelism, use_laz
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
x = torch.randint(0, 1000, (2, 3)).cuda()
hidden_states = torch.randint(0, 1000, (2, 3, 128)).to(torch.float32).cuda()
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if name == 'transformers_bert':
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
enable_tensor_parallelism, use_lazy_init)
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
enable_tensor_parallelism, use_lazy_init)
if name == 'transformers_bert_for_mcq':
x = torch.randint(0, 1000, (2, 3, 3)).cuda()
attention_mask = torch.ones_like(x).cuda()
if stage_manager.stage == 0:
output = sharded_model(input_ids=x, attention_mask=attention_mask, stage_manager=stage_manager)
assert output['hidden_states'].shape == (6, 3, 128)
else:
hidden_states = torch.randint(0, 1000, (6, 3, 128)).to(torch.float32).cuda()
output = sharded_model(input_ids=x,
hidden_states=hidden_states,
attention_mask=attention_mask,
stage_manager=stage_manager)
assert output[0].shape == (2, 3)
else:
x = torch.randint(0, 1000, (2, 3)).cuda()
# one batch, 2 single sentences, each sentence has 3 tokens
hidden_states = torch.randint(0, 1000, (2, 3, 128)).to(torch.float32).cuda()
if stage_manager.stage == 0:
attention_mask = torch.ones_like(x).cuda()
output = sharded_model(input_ids=x, attention_mask=attention_mask, stage_manager=stage_manager)
# print(output['hidden_states'].shape)
assert output['hidden_states'].shape == (2, 3, 128)
else:
attention_mask = torch.ones((2, 3)).cuda()
output = sharded_model(hidden_states=hidden_states,
attention_mask=attention_mask,
stage_manager=stage_manager)
# print(output[0].shape)
assert output[0].shape == (2, 3, 128)
assert output[0].shape[0] == 2
torch.cuda.empty_cache()